from fastapi import FastAPI, HTTPException, Header, Depends from pydantic import BaseModel import os from pymongo import MongoClient from langchain.embeddings import SentenceTransformerEmbeddings from langchain_community.vectorstores import MongoDBAtlasVectorSearch import uvicorn from dotenv import load_dotenv from fastapi.middleware.cors import CORSMiddleware load_dotenv() # MongoDB connection and Langchain setup (as provided) MONGODB_ATLAS_CLUSTER_URI = os.getenv("MONGODB_ATLAS_CLUSTER_URI", None) client = MongoClient(MONGODB_ATLAS_CLUSTER_URI) DB_NAME = "quran_db" COLLECTION_NAME = "tafsir" ATLAS_VECTOR_SEARCH_INDEX_NAME = "langchain_index" MONGODB_COLLECTION = client[DB_NAME][COLLECTION_NAME] embeddings = SentenceTransformerEmbeddings(model_name="BAAI/bge-m3") vector_search = MongoDBAtlasVectorSearch.from_connection_string( MONGODB_ATLAS_CLUSTER_URI, DB_NAME + "." + COLLECTION_NAME, embeddings, index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME, ) # FastAPI application setup app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) def index_file(filepath): """ Index each line in a file for quick search. Returns a dictionary with key as content and value as line number. """ index = {} with open(filepath, 'r', encoding='utf-8') as file: for line_number, line in enumerate(file, 1): # Starting line numbers at 1 for human readability index[line.strip()] = line_number return index def get_text_by_line_number(filepath, line_numbers): """ Retrieve specific lines from a file based on line numbers. """ lines = {} with open(filepath, 'r', encoding='utf-8') as file: for line_number, line in enumerate(file, 1): if line_number in line_numbers: lines[line_number] = line.strip() if len(lines) == len(line_numbers): # Stop reading once all required lines are read break return lines # Existing API endpoints @app.get("/") async def read_root(): return {"message": "Welcome to our app"} # New Query model for the POST request body class Item(BaseModel): question: str EXPECTED_TOKEN = os.getenv("API_TOKEN") def verify_token(authorization: str = Header(None)): """ Dependency to verify the Authorization header contains the correct Bearer token. """ # Prefix for bearer token in the Authorization header prefix = "Bearer " # Check if the Authorization header is present and correctly formatted if not authorization or not authorization.startswith(prefix): raise HTTPException(status_code=401, detail="Unauthorized: Missing or invalid token") # Extract the token from the Authorization header token = authorization[len(prefix):] # Compare the extracted token to the expected token value if token != EXPECTED_TOKEN: raise HTTPException(status_code=401, detail="Unauthorized: Incorrect token") # New API endpoint to get an answer using the chain @app.post("/get_answer") async def get_answer(item: Item, token: str = Depends(verify_token)): try: # Perform the similarity search with the provided question matching_docs = vector_search.similarity_search(item.question, k=3) clean_answers = [doc.page_content.replace("\n", " ").strip() for doc in matching_docs] # Assuming 'search_file.txt' is where we want to search answers answers_index = index_file('dataset/quran_tafseer_formatted.txt') # Collect line numbers based on answers found line_numbers = [answers_index[answer] for answer in clean_answers if answer in answers_index] # Assuming 'retrieve_file.txt' is where we retrieve lines based on line numbers result_text = get_text_by_line_number('dataset/quran_tafseer.txt', line_numbers) return {"result_text": result_text} except Exception as e: # If there's an error, return a 500 error with the error's details raise HTTPException(status_code=500, detail=str(e)) # if __name__ == "__main__": # uvicorn.run("main:app", host="0.0.0.0", port=8080, reload=False)