quran-nlp / app /main.py
deveix
print error
e89a3bf
raw
history blame
11 kB
from fastapi import FastAPI, File, UploadFile, HTTPException, Depends, Header
from pydantic import BaseModel
import os
from pymongo import MongoClient
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
import uvicorn
from dotenv import load_dotenv
from fastapi.middleware.cors import CORSMiddleware
from uuid import uuid4
import joblib
import librosa
import numpy as np
import pandas as pd
import numpy as np
import librosa.display
import soundfile as sf
import opensmile
load_dotenv()
# MongoDB connection
MONGODB_ATLAS_CLUSTER_URI = os.getenv("MONGODB_ATLAS_CLUSTER_URI", None)
client = MongoClient(MONGODB_ATLAS_CLUSTER_URI)
DB_NAME = "quran_db"
COLLECTION_NAME = "tafsir"
ATLAS_VECTOR_SEARCH_INDEX_NAME = "langchain_index"
MONGODB_COLLECTION = client[DB_NAME][COLLECTION_NAME]
embeddings = SentenceTransformerEmbeddings(model_name="BAAI/bge-m3")
vector_search = MongoDBAtlasVectorSearch.from_connection_string(
MONGODB_ATLAS_CLUSTER_URI,
DB_NAME + "." + COLLECTION_NAME,
embeddings,
index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
)
# FastAPI application setup
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
def index_file(filepath):
""" Index each block in a file separated by double newlines for quick search.
Returns a dictionary with key as content and value as block number. """
index = {}
with open(filepath, 'r', encoding='utf-8') as file:
content = file.read() # Read the whole file at once
blocks = content.split("\n\n") # Split the content by double newlines
for block_number, block in enumerate(blocks, 1): # Starting block numbers at 1 for human readability
# Replace single newlines within blocks with space and strip leading/trailing whitespace
formatted_block = ' '.join(block.split('\n')).strip()
index[formatted_block] = block_number
# if(block_number == 100):
# print(formatted_block) # Print the 5th block
return index
def get_text_by_block_number(filepath, block_numbers):
""" Retrieve specific blocks from a file based on block numbers, where each block is separated by '\n\n'. """
blocks_text = []
with open(filepath, 'r', encoding='utf-8') as file:
content = file.read() # Read the whole file at once
blocks = content.split("\n\n") # Split the content by double newlines
for block_number, block in enumerate(blocks, 1): # Starting block numbers at 1 for human readability
if block_number in block_numbers:
# Replace single newlines within blocks with space and strip leading/trailing whitespace
formatted_block = ' '.join(block.split('\n')).strip()
blocks_text.append(formatted_block)
if len(blocks_text) == len(block_numbers): # Stop reading once all required blocks are retrieved
break
return blocks_text
# Existing API endpoints
@app.get("/")
async def read_root():
return {"message": "Welcome to our app"}
# New Query model for the POST request body
class Item(BaseModel):
question: str
EXPECTED_TOKEN = os.getenv("API_TOKEN")
def verify_token(authorization: str = Header(None)):
"""
Dependency to verify the Authorization header contains the correct Bearer token.
"""
# Prefix for bearer token in the Authorization header
prefix = "Bearer "
# Check if the Authorization header is present and correctly formatted
if not authorization or not authorization.startswith(prefix):
raise HTTPException(status_code=401, detail="Unauthorized: Missing or invalid token")
# Extract the token from the Authorization header
token = authorization[len(prefix):]
# Compare the extracted token to the expected token value
if token != EXPECTED_TOKEN:
raise HTTPException(status_code=401, detail="Unauthorized: Incorrect token")
# New API endpoint to get an answer using the chain
@app.post("/get_answer")
async def get_answer(item: Item, token: str = Depends(verify_token)):
try:
# Perform the similarity search with the provided question
matching_docs = vector_search.similarity_search(item.question, k=3)
clean_answers = [doc.page_content.replace("\n", " ").strip() for doc in matching_docs]
# Assuming 'search_file.txt' is where we want to search answers
answers_index = index_file('app/quran_tafseer_formatted.txt')
# Collect line numbers based on answers found
line_numbers = [answers_index[answer] for answer in clean_answers if answer in answers_index]
# Assuming 'retrieve_file.txt' is where we retrieve lines based on line numbers
result_text = get_text_by_block_number('app/quran_tafseer.txt', line_numbers)
return {"result_text": result_text}
except Exception as e:
# If there's an error, return a 500 error with the error's details
raise HTTPException(status_code=500, detail=str(e))
# mlp
mlp_model = joblib.load('app/mlp_model.pkl')
mlp_pca = joblib.load('app/pca.pkl')
mlp_scaler = joblib.load('app/scaler.pkl')
mlp_label_encoder = joblib.load('app/label_encoder.pkl')
def preprocess_audio(path, save_dir):
y, sr = librosa.load(path)
# remove silence
intervals = librosa.effects.split(y, top_db=20)
# Concatenate non-silent intervals
y_no_gaps = np.concatenate([y[start:end] for start, end in intervals])
file_name_without_extension = os.path.basename(path).split('.')[0]
extension = os.path.basename(path).split('.')[1]
y_trimmed, _ = librosa.effects.trim(y_no_gaps, top_db = 20)
D = librosa.stft(y)
S_db = librosa.amplitude_to_db(np.abs(D), ref=np.max)
S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128*2,)
S_db_mel = librosa.amplitude_to_db(np.abs(S), ref=np.max)
# Apply noise reduction (example using spectral subtraction)
y_denoised = librosa.effects.preemphasis(y_trimmed)
# Apply dynamic range compression
y_compressed = librosa.effects.preemphasis(y_denoised)
# Augmentation (example of time stretching)
# y_stretched = librosa.effects.time_stretch(y_compressed, rate=1.2)
# Silence Removal
y_silence_removed, _ = librosa.effects.trim(y_compressed)
# Equalization (example: apply high-pass filter)
y_equalized = librosa.effects.preemphasis(y_silence_removed)
# Define target sample rate
target_sr = sr
# # Data Augmentation (example: pitch shifting)
# y_pitch_shifted = librosa.effects.pitch_shift(y_normalized, sr=target_sr, n_steps=2)
# Split audio into non-silent intervals
# Normalize the audio signal
y_normalized = librosa.util.normalize(y_equalized)
# Feature Extraction (example: MFCCs)
# mfccs = librosa.feature.mfcc(y=y_normalized, sr=target_sr, n_mfcc=20)
# output_file_path = os.path.join(save_dir, f"{file_name_without_extension}.{extension}")
# Write the audio data to the output file in .wav format
sf.write(path, y_normalized, target_sr)
return 'success'
smile = opensmile.Smile(
feature_set=opensmile.FeatureSet.ComParE_2016,
feature_level=opensmile.FeatureLevel.Functionals,
)
def extract_features(file_path):
# # Load the audio file
# y, sr = librosa.load(file_path, sr=None, dtype=np.float32)
# # Extract MFCCs
# mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=20)
# mfccs_mean = pd.Series(mfccs.mean(axis=1), index=[f'mfcc_{i}' for i in range(mfccs.shape[0])])
# # Extract Spectral Features
# spectral_centroids = pd.Series(np.mean(librosa.feature.spectral_centroid(y=y, sr=sr)), index=['spectral_centroid'])
# spectral_rolloff = pd.Series(np.mean(librosa.feature.spectral_rolloff(y=y, sr=sr)), index=['spectral_rolloff'])
# spectral_flux = pd.Series(np.mean(librosa.onset.onset_strength(y=y, sr=sr)), index=['spectral_flux'])
# spectral_contrast = pd.Series(np.mean(librosa.feature.spectral_contrast(S=np.abs(librosa.stft(y)), sr=sr), axis=1), index=[f'spectral_contrast_{i}' for i in range(librosa.feature.spectral_contrast(S=np.abs(librosa.stft(y)), sr=sr).shape[0])])
# # Extract Pitch
# pitches, magnitudes = librosa.piptrack(y=y, sr=sr)
# pitch_mean = pd.Series(np.mean(pitches[pitches != 0]), index=['pitch_mean']) # Average only non-zero values
# # Extract Zero Crossings
# zero_crossings = pd.Series(np.mean(librosa.feature.zero_crossing_rate(y)), index=['zero_crossings'])
# # Combine all features into a single Series
# features = pd.concat([mfccs_mean, spectral_centroids, spectral_rolloff, spectral_flux, spectral_contrast, pitch_mean, zero_crossings])
features = smile.process_file(file_path)
features_reshaped = features.squeeze()
# Ensure it's now a 2D structure suitable for DataFrame
print("New shape of features:", features_reshaped.shape)
all_data = pd.DataFrame([features_reshaped])
return all_data
@app.post("/mlp")
async def handle_audio(file: UploadFile = File(...)):
try:
# Ensure that we are handling an MP3 file
if file.content_type == "audio/mpeg" or file.content_type == "audio/mp3":
file_extension = ".mp3"
elif file.content_type == "audio/wav":
file_extension = ".wav"
else:
raise HTTPException(status_code=400, detail="Invalid file type. Supported types: MP3, WAV.")
# Read the file's content
contents = await file.read()
temp_filename = f"app/{uuid4().hex}{file_extension}"
# Save file to a temporary file if needed or process directly from memory
with open(temp_filename, "wb") as f:
f.write(contents)
preprocess_audio(temp_filename, 'app')
# Here you would add the feature extraction logic
features = extract_features(temp_filename)
print("Extracted Features:", features)
features = mlp_scaler.transform(features)
features = mlp_pca.transform(features)
# proceed with an inference
results = mlp_model.predict(features)
decoded_predictions = [mlp_label_encoder.classes_[i] for i in results]
# # Decode the predictions using the label encoder
# decoded_predictions = mlp_label_encoder.inverse_transform(results)
# .tolist()
# Clean up the temporary file
os.remove(temp_filename)
# Return a successful response with decoded predictions
return {"message": "File processed successfully", "prediction": decoded_predictions}
except Exception as e:
print(e)
# Handle possible exceptions
raise HTTPException(status_code=500, detail=str(e))
# if __name__ == "__main__":
# uvicorn.run("main:app", host="0.0.0.0", port=8080, reload=False)