File size: 1,699 Bytes
713ff7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import pandas as pd
import gradio as gr

data = {
    "Method": [
        "OR-Tools", "ACO", "LKH3", "NN2Opt", "Tabu", 
    ],
    "TWCVRP": [
        57.90, 48.82, 51.35, 46.67, 45.58,
    ],
    "TWCVRP": [
        59.11, 42.89, 49.06, 36.59, 33.59, 
    ]
}

df = pd.DataFrame(data)
df['Average Score'] = df.iloc[:, 1:].mean(axis=1).round(2)
df = df[['Method', 'Average Score'] + [col for col in df.columns if col not in ['Method', 'Average Score']]]

def display_data():
    return df

with gr.Blocks() as demo:
    # gr.Markdown("![camel icon](https://cdn-uploads.huggingface.co/production/uploads/656864e12d73834278a8dea7/n-XfVKd1xVywH_vgPyJyQ.png)", elem_id="camel-icon")  # Replace with actual camel icon URL
    gr.Markdown("# **SVRP-Bench: Real-World Vehicle Routing Benchmark**")
    gr.Markdown("""
    This table shows the performance of different models across various tasks/datasets including CVRP and TWVRP. 
    """)
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("🏅 LLM Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
            # with gr.Row():
                # with gr.Column():
            gr.Dataframe(value=df, label="SVRP-Bench Model Performance", interactive=False)

        with gr.TabItem("📤 How to Submit", elem_id="submission-tab", id=1):
            gr.Markdown("""
            ## Submission Instructions
            To contribute your model's results to the SVRP-Bench leaderboard:
            - **Via Email**:
              - Send your results to **[email protected]**, and we’ll add them to the leaderboard for you.
            **We look forward to seeing your contributions!**
            """)

demo.launch()