Spaces:
Build error
Build error
Commit
Β·
8abeb87
1
Parent(s):
7a9e4f3
Adding files
Browse files- 1. Transformer Models.ipynb +691 -0
- pages/1_π§ _Sentiment Analysis.py +73 -0
- pages/2_π_Fill Mask.py +31 -0
- pages/3_π_Zero Shot Classification.py +84 -0
- pages/4_β_Question Answer.py +31 -0
- pages/5_βοΈ_Text_Summarization.py +22 -0
- requirements.txt +4 -0
- π _Home.py +30 -0
1. Transformer Models.ipynb
ADDED
|
@@ -0,0 +1,691 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# TRANSFORMER MODELS"
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "markdown",
|
| 12 |
+
"metadata": {},
|
| 13 |
+
"source": [
|
| 14 |
+
"## Transformers, what can they do?"
|
| 15 |
+
]
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"cell_type": "markdown",
|
| 19 |
+
"metadata": {},
|
| 20 |
+
"source": [
|
| 21 |
+
"### Sentiment Analysis"
|
| 22 |
+
]
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"cell_type": "code",
|
| 26 |
+
"execution_count": 1,
|
| 27 |
+
"metadata": {},
|
| 28 |
+
"outputs": [
|
| 29 |
+
{
|
| 30 |
+
"name": "stderr",
|
| 31 |
+
"output_type": "stream",
|
| 32 |
+
"text": [
|
| 33 |
+
"No model was supplied, defaulted to distilbert/distilbert-base-uncased-finetuned-sst-2-english and revision 714eb0f (https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english).\n",
|
| 34 |
+
"Using a pipeline without specifying a model name and revision in production is not recommended.\n"
|
| 35 |
+
]
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"name": "stdout",
|
| 39 |
+
"output_type": "stream",
|
| 40 |
+
"text": [
|
| 41 |
+
"WARNING:tensorflow:From c:\\Users\\ACER\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\tf_keras\\src\\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.\n",
|
| 42 |
+
"\n"
|
| 43 |
+
]
|
| 44 |
+
},
|
| 45 |
+
{
|
| 46 |
+
"data": {
|
| 47 |
+
"text/plain": [
|
| 48 |
+
"[{'label': 'POSITIVE', 'score': 0.9598049521446228}]"
|
| 49 |
+
]
|
| 50 |
+
},
|
| 51 |
+
"execution_count": 1,
|
| 52 |
+
"metadata": {},
|
| 53 |
+
"output_type": "execute_result"
|
| 54 |
+
}
|
| 55 |
+
],
|
| 56 |
+
"source": [
|
| 57 |
+
"from transformers import pipeline\n",
|
| 58 |
+
"\n",
|
| 59 |
+
"classifier = pipeline(\"sentiment-analysis\")\n",
|
| 60 |
+
"classifier(\"I've been waiting for a HuggingFace course my whole life.\")"
|
| 61 |
+
]
|
| 62 |
+
},
|
| 63 |
+
{
|
| 64 |
+
"cell_type": "code",
|
| 65 |
+
"execution_count": 2,
|
| 66 |
+
"metadata": {},
|
| 67 |
+
"outputs": [
|
| 68 |
+
{
|
| 69 |
+
"data": {
|
| 70 |
+
"text/plain": [
|
| 71 |
+
"[{'label': 'POSITIVE', 'score': 0.9598049521446228},\n",
|
| 72 |
+
" {'label': 'NEGATIVE', 'score': 0.9994558691978455}]"
|
| 73 |
+
]
|
| 74 |
+
},
|
| 75 |
+
"execution_count": 2,
|
| 76 |
+
"metadata": {},
|
| 77 |
+
"output_type": "execute_result"
|
| 78 |
+
}
|
| 79 |
+
],
|
| 80 |
+
"source": [
|
| 81 |
+
"# we can pass several sentences\n",
|
| 82 |
+
"classifier(\n",
|
| 83 |
+
" [\"I've been waiting for a HuggingFace course my whole life.\", \"I hate this so much!\"]\n",
|
| 84 |
+
")"
|
| 85 |
+
]
|
| 86 |
+
},
|
| 87 |
+
{
|
| 88 |
+
"cell_type": "markdown",
|
| 89 |
+
"metadata": {},
|
| 90 |
+
"source": [
|
| 91 |
+
"### Zero-shot classification"
|
| 92 |
+
]
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"cell_type": "code",
|
| 96 |
+
"execution_count": 3,
|
| 97 |
+
"metadata": {},
|
| 98 |
+
"outputs": [
|
| 99 |
+
{
|
| 100 |
+
"name": "stderr",
|
| 101 |
+
"output_type": "stream",
|
| 102 |
+
"text": [
|
| 103 |
+
"No model was supplied, defaulted to facebook/bart-large-mnli and revision d7645e1 (https://huggingface.co/facebook/bart-large-mnli).\n",
|
| 104 |
+
"Using a pipeline without specifying a model name and revision in production is not recommended.\n"
|
| 105 |
+
]
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"data": {
|
| 109 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 110 |
+
"model_id": "13af57499d894e8aa77c7ed39138d3dd",
|
| 111 |
+
"version_major": 2,
|
| 112 |
+
"version_minor": 0
|
| 113 |
+
},
|
| 114 |
+
"text/plain": [
|
| 115 |
+
"model.safetensors: 98%|#########8| 1.60G/1.63G [00:00<?, ?B/s]"
|
| 116 |
+
]
|
| 117 |
+
},
|
| 118 |
+
"metadata": {},
|
| 119 |
+
"output_type": "display_data"
|
| 120 |
+
},
|
| 121 |
+
{
|
| 122 |
+
"name": "stderr",
|
| 123 |
+
"output_type": "stream",
|
| 124 |
+
"text": [
|
| 125 |
+
"c:\\Users\\ACER\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\huggingface_hub\\file_download.py:147: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\\Users\\ACER\\.cache\\huggingface\\hub\\models--facebook--bart-large-mnli. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.\n",
|
| 126 |
+
"To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
|
| 127 |
+
" warnings.warn(message)\n"
|
| 128 |
+
]
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"data": {
|
| 132 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 133 |
+
"model_id": "5184b998013d4eacac2a0e943ebcbfdf",
|
| 134 |
+
"version_major": 2,
|
| 135 |
+
"version_minor": 0
|
| 136 |
+
},
|
| 137 |
+
"text/plain": [
|
| 138 |
+
"tokenizer_config.json: 0%| | 0.00/26.0 [00:00<?, ?B/s]"
|
| 139 |
+
]
|
| 140 |
+
},
|
| 141 |
+
"metadata": {},
|
| 142 |
+
"output_type": "display_data"
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
"data": {
|
| 146 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 147 |
+
"model_id": "af001870e23b4808862f0f4e160327ef",
|
| 148 |
+
"version_major": 2,
|
| 149 |
+
"version_minor": 0
|
| 150 |
+
},
|
| 151 |
+
"text/plain": [
|
| 152 |
+
"vocab.json: 0%| | 0.00/899k [00:00<?, ?B/s]"
|
| 153 |
+
]
|
| 154 |
+
},
|
| 155 |
+
"metadata": {},
|
| 156 |
+
"output_type": "display_data"
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"data": {
|
| 160 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 161 |
+
"model_id": "743eb773e873441c813a1d13925215cf",
|
| 162 |
+
"version_major": 2,
|
| 163 |
+
"version_minor": 0
|
| 164 |
+
},
|
| 165 |
+
"text/plain": [
|
| 166 |
+
"merges.txt: 0%| | 0.00/456k [00:00<?, ?B/s]"
|
| 167 |
+
]
|
| 168 |
+
},
|
| 169 |
+
"metadata": {},
|
| 170 |
+
"output_type": "display_data"
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"data": {
|
| 174 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 175 |
+
"model_id": "f29eb797c99242558fe742a00411262c",
|
| 176 |
+
"version_major": 2,
|
| 177 |
+
"version_minor": 0
|
| 178 |
+
},
|
| 179 |
+
"text/plain": [
|
| 180 |
+
"tokenizer.json: 0%| | 0.00/1.36M [00:00<?, ?B/s]"
|
| 181 |
+
]
|
| 182 |
+
},
|
| 183 |
+
"metadata": {},
|
| 184 |
+
"output_type": "display_data"
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"data": {
|
| 188 |
+
"text/plain": [
|
| 189 |
+
"{'sequence': 'This is a course about the Transformers library.',\n",
|
| 190 |
+
" 'labels': ['education', 'business', 'politics'],\n",
|
| 191 |
+
" 'scores': [0.8719874024391174, 0.09406554698944092, 0.033947039395570755]}"
|
| 192 |
+
]
|
| 193 |
+
},
|
| 194 |
+
"execution_count": 3,
|
| 195 |
+
"metadata": {},
|
| 196 |
+
"output_type": "execute_result"
|
| 197 |
+
}
|
| 198 |
+
],
|
| 199 |
+
"source": [
|
| 200 |
+
"from transformers import pipeline\n",
|
| 201 |
+
"\n",
|
| 202 |
+
"classifier = pipeline(\"zero-shot-classification\")\n",
|
| 203 |
+
"\n",
|
| 204 |
+
"classifier(\n",
|
| 205 |
+
" \"This is a course about the Transformers library.\",\n",
|
| 206 |
+
" candidate_labels = [\"education\", \"politics\", \"business\"]\n",
|
| 207 |
+
")"
|
| 208 |
+
]
|
| 209 |
+
},
|
| 210 |
+
{
|
| 211 |
+
"cell_type": "markdown",
|
| 212 |
+
"metadata": {},
|
| 213 |
+
"source": [
|
| 214 |
+
"### Text generation"
|
| 215 |
+
]
|
| 216 |
+
},
|
| 217 |
+
{
|
| 218 |
+
"cell_type": "code",
|
| 219 |
+
"execution_count": 4,
|
| 220 |
+
"metadata": {},
|
| 221 |
+
"outputs": [
|
| 222 |
+
{
|
| 223 |
+
"name": "stderr",
|
| 224 |
+
"output_type": "stream",
|
| 225 |
+
"text": [
|
| 226 |
+
"No model was supplied, defaulted to openai-community/gpt2 and revision 607a30d (https://huggingface.co/openai-community/gpt2).\n",
|
| 227 |
+
"Using a pipeline without specifying a model name and revision in production is not recommended.\n",
|
| 228 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
| 229 |
+
]
|
| 230 |
+
},
|
| 231 |
+
{
|
| 232 |
+
"data": {
|
| 233 |
+
"text/plain": [
|
| 234 |
+
"[{'generated_text': 'In this course, we will teach you how to build a custom script and a WebScript web server that uses the JQuery 4.3 framework.\\n\\nYou will run up to 60 minutes with a single setup, in our example JQuery J'}]"
|
| 235 |
+
]
|
| 236 |
+
},
|
| 237 |
+
"execution_count": 4,
|
| 238 |
+
"metadata": {},
|
| 239 |
+
"output_type": "execute_result"
|
| 240 |
+
}
|
| 241 |
+
],
|
| 242 |
+
"source": [
|
| 243 |
+
"from transformers import pipeline\n",
|
| 244 |
+
"\n",
|
| 245 |
+
"generator = pipeline(\"text-generation\")\n",
|
| 246 |
+
"generator(\"In this course, we will teach you how to\")"
|
| 247 |
+
]
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"cell_type": "markdown",
|
| 251 |
+
"metadata": {},
|
| 252 |
+
"source": [
|
| 253 |
+
"### Using any model from the Hub in a pipeline"
|
| 254 |
+
]
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"cell_type": "code",
|
| 258 |
+
"execution_count": 5,
|
| 259 |
+
"metadata": {},
|
| 260 |
+
"outputs": [
|
| 261 |
+
{
|
| 262 |
+
"name": "stderr",
|
| 263 |
+
"output_type": "stream",
|
| 264 |
+
"text": [
|
| 265 |
+
"Truncation was not explicitly activated but `max_length` is provided a specific value, please use `truncation=True` to explicitly truncate examples to max length. Defaulting to 'longest_first' truncation strategy. If you encode pairs of sequences (GLUE-style) with the tokenizer you can select this strategy more precisely by providing a specific strategy to `truncation`.\n",
|
| 266 |
+
"Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
|
| 267 |
+
]
|
| 268 |
+
},
|
| 269 |
+
{
|
| 270 |
+
"data": {
|
| 271 |
+
"text/plain": [
|
| 272 |
+
"[{'generated_text': 'In this course, we will teach you how to implement an API that can only be used by a single user.\\n\\n\\nHere are the slides'},\n",
|
| 273 |
+
" {'generated_text': 'In this course, we will teach you how to put food in order to reduce the risk of heart disease and even kill yourself as part of a program'}]"
|
| 274 |
+
]
|
| 275 |
+
},
|
| 276 |
+
"execution_count": 5,
|
| 277 |
+
"metadata": {},
|
| 278 |
+
"output_type": "execute_result"
|
| 279 |
+
}
|
| 280 |
+
],
|
| 281 |
+
"source": [
|
| 282 |
+
"from transformers import pipeline\n",
|
| 283 |
+
"\n",
|
| 284 |
+
"generator = pipeline(\"text-generation\", model=\"distilgpt2\")\n",
|
| 285 |
+
"\n",
|
| 286 |
+
"generator(\n",
|
| 287 |
+
" \"In this course, we will teach you how to\",\n",
|
| 288 |
+
" max_length=30,\n",
|
| 289 |
+
" num_return_sequences=2)"
|
| 290 |
+
]
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"cell_type": "markdown",
|
| 294 |
+
"metadata": {},
|
| 295 |
+
"source": [
|
| 296 |
+
"### Mask filling"
|
| 297 |
+
]
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"cell_type": "code",
|
| 301 |
+
"execution_count": 6,
|
| 302 |
+
"metadata": {},
|
| 303 |
+
"outputs": [
|
| 304 |
+
{
|
| 305 |
+
"name": "stderr",
|
| 306 |
+
"output_type": "stream",
|
| 307 |
+
"text": [
|
| 308 |
+
"No model was supplied, defaulted to distilbert/distilroberta-base and revision fb53ab8 (https://huggingface.co/distilbert/distilroberta-base).\n",
|
| 309 |
+
"Using a pipeline without specifying a model name and revision in production is not recommended.\n",
|
| 310 |
+
"Some weights of the model checkpoint at distilbert/distilroberta-base were not used when initializing RobertaForMaskedLM: ['roberta.pooler.dense.bias', 'roberta.pooler.dense.weight']\n",
|
| 311 |
+
"- This IS expected if you are initializing RobertaForMaskedLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
| 312 |
+
"- This IS NOT expected if you are initializing RobertaForMaskedLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
|
| 313 |
+
]
|
| 314 |
+
},
|
| 315 |
+
{
|
| 316 |
+
"data": {
|
| 317 |
+
"text/plain": [
|
| 318 |
+
"[{'score': 0.19198469817638397,\n",
|
| 319 |
+
" 'token': 30412,\n",
|
| 320 |
+
" 'token_str': ' mathematical',\n",
|
| 321 |
+
" 'sequence': 'This course will teach you all about mathematical models.'},\n",
|
| 322 |
+
" {'score': 0.04209211468696594,\n",
|
| 323 |
+
" 'token': 38163,\n",
|
| 324 |
+
" 'token_str': ' computational',\n",
|
| 325 |
+
" 'sequence': 'This course will teach you all about computational models.'}]"
|
| 326 |
+
]
|
| 327 |
+
},
|
| 328 |
+
"execution_count": 6,
|
| 329 |
+
"metadata": {},
|
| 330 |
+
"output_type": "execute_result"
|
| 331 |
+
}
|
| 332 |
+
],
|
| 333 |
+
"source": [
|
| 334 |
+
"from transformers import pipeline\n",
|
| 335 |
+
"\n",
|
| 336 |
+
"unmasker = pipeline(\"fill-mask\")\n",
|
| 337 |
+
"unmasker(\"This course will teach you all about <mask> models.\", top_k=2)"
|
| 338 |
+
]
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"cell_type": "markdown",
|
| 342 |
+
"metadata": {},
|
| 343 |
+
"source": [
|
| 344 |
+
"### Named Entity Recognition"
|
| 345 |
+
]
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"cell_type": "code",
|
| 349 |
+
"execution_count": 7,
|
| 350 |
+
"metadata": {},
|
| 351 |
+
"outputs": [
|
| 352 |
+
{
|
| 353 |
+
"name": "stderr",
|
| 354 |
+
"output_type": "stream",
|
| 355 |
+
"text": [
|
| 356 |
+
"No model was supplied, defaulted to dbmdz/bert-large-cased-finetuned-conll03-english and revision 4c53496 (https://huggingface.co/dbmdz/bert-large-cased-finetuned-conll03-english).\n",
|
| 357 |
+
"Using a pipeline without specifying a model name and revision in production is not recommended.\n",
|
| 358 |
+
"Some weights of the model checkpoint at dbmdz/bert-large-cased-finetuned-conll03-english were not used when initializing BertForTokenClassification: ['bert.pooler.dense.bias', 'bert.pooler.dense.weight']\n",
|
| 359 |
+
"- This IS expected if you are initializing BertForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
| 360 |
+
"- This IS NOT expected if you are initializing BertForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
| 361 |
+
"c:\\Users\\ACER\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\transformers\\pipelines\\token_classification.py:170: UserWarning: `grouped_entities` is deprecated and will be removed in version v5.0.0, defaulted to `aggregation_strategy=\"AggregationStrategy.SIMPLE\"` instead.\n",
|
| 362 |
+
" warnings.warn(\n"
|
| 363 |
+
]
|
| 364 |
+
},
|
| 365 |
+
{
|
| 366 |
+
"data": {
|
| 367 |
+
"text/plain": [
|
| 368 |
+
"[{'entity_group': 'PER',\n",
|
| 369 |
+
" 'score': 0.99884915,\n",
|
| 370 |
+
" 'word': 'Ahmad',\n",
|
| 371 |
+
" 'start': 11,\n",
|
| 372 |
+
" 'end': 16},\n",
|
| 373 |
+
" {'entity_group': 'ORG',\n",
|
| 374 |
+
" 'score': 0.9950792,\n",
|
| 375 |
+
" 'word': 'University of Engineering and Technology',\n",
|
| 376 |
+
" 'start': 31,\n",
|
| 377 |
+
" 'end': 71},\n",
|
| 378 |
+
" {'entity_group': 'LOC',\n",
|
| 379 |
+
" 'score': 0.97850055,\n",
|
| 380 |
+
" 'word': 'Lahore',\n",
|
| 381 |
+
" 'start': 73,\n",
|
| 382 |
+
" 'end': 79},\n",
|
| 383 |
+
" {'entity_group': 'ORG',\n",
|
| 384 |
+
" 'score': 0.78072757,\n",
|
| 385 |
+
" 'word': \"Bechelor ' s\",\n",
|
| 386 |
+
" 'start': 95,\n",
|
| 387 |
+
" 'end': 105},\n",
|
| 388 |
+
" {'entity_group': 'ORG',\n",
|
| 389 |
+
" 'score': 0.92247367,\n",
|
| 390 |
+
" 'word': 'Computer Science',\n",
|
| 391 |
+
" 'start': 109,\n",
|
| 392 |
+
" 'end': 125}]"
|
| 393 |
+
]
|
| 394 |
+
},
|
| 395 |
+
"execution_count": 7,
|
| 396 |
+
"metadata": {},
|
| 397 |
+
"output_type": "execute_result"
|
| 398 |
+
}
|
| 399 |
+
],
|
| 400 |
+
"source": [
|
| 401 |
+
"from transformers import pipeline\n",
|
| 402 |
+
"\n",
|
| 403 |
+
"ner = pipeline(\"ner\", grouped_entities=True)\n",
|
| 404 |
+
"ner(\"My name is Ahmad and I work at University of Engineering and Technology, Lahore. I was prsuing Bechelor's of Computer Science.\")"
|
| 405 |
+
]
|
| 406 |
+
},
|
| 407 |
+
{
|
| 408 |
+
"cell_type": "markdown",
|
| 409 |
+
"metadata": {},
|
| 410 |
+
"source": [
|
| 411 |
+
"### Question answering"
|
| 412 |
+
]
|
| 413 |
+
},
|
| 414 |
+
{
|
| 415 |
+
"cell_type": "code",
|
| 416 |
+
"execution_count": 2,
|
| 417 |
+
"metadata": {},
|
| 418 |
+
"outputs": [
|
| 419 |
+
{
|
| 420 |
+
"name": "stderr",
|
| 421 |
+
"output_type": "stream",
|
| 422 |
+
"text": [
|
| 423 |
+
"No model was supplied, defaulted to distilbert/distilbert-base-cased-distilled-squad and revision 564e9b5 (https://huggingface.co/distilbert/distilbert-base-cased-distilled-squad).\n",
|
| 424 |
+
"Using a pipeline without specifying a model name and revision in production is not recommended.\n"
|
| 425 |
+
]
|
| 426 |
+
}
|
| 427 |
+
],
|
| 428 |
+
"source": [
|
| 429 |
+
"from transformers import pipeline\n",
|
| 430 |
+
"\n",
|
| 431 |
+
"question_answerer = pipeline(\"question-answering\")\n",
|
| 432 |
+
"\n",
|
| 433 |
+
"ans = question_answerer(\n",
|
| 434 |
+
" question=\"where do I work?\",\n",
|
| 435 |
+
" context = \"My name is Ahmad and I work at University of Engineering and Technology, Lahore\"\n",
|
| 436 |
+
")"
|
| 437 |
+
]
|
| 438 |
+
},
|
| 439 |
+
{
|
| 440 |
+
"cell_type": "code",
|
| 441 |
+
"execution_count": 4,
|
| 442 |
+
"metadata": {},
|
| 443 |
+
"outputs": [
|
| 444 |
+
{
|
| 445 |
+
"data": {
|
| 446 |
+
"text/plain": [
|
| 447 |
+
"'University of Engineering and Technology, Lahore'"
|
| 448 |
+
]
|
| 449 |
+
},
|
| 450 |
+
"execution_count": 4,
|
| 451 |
+
"metadata": {},
|
| 452 |
+
"output_type": "execute_result"
|
| 453 |
+
}
|
| 454 |
+
],
|
| 455 |
+
"source": [
|
| 456 |
+
"ans['answer']"
|
| 457 |
+
]
|
| 458 |
+
},
|
| 459 |
+
{
|
| 460 |
+
"cell_type": "markdown",
|
| 461 |
+
"metadata": {},
|
| 462 |
+
"source": [
|
| 463 |
+
"### Summarization"
|
| 464 |
+
]
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"cell_type": "code",
|
| 468 |
+
"execution_count": 9,
|
| 469 |
+
"metadata": {},
|
| 470 |
+
"outputs": [
|
| 471 |
+
{
|
| 472 |
+
"name": "stderr",
|
| 473 |
+
"output_type": "stream",
|
| 474 |
+
"text": [
|
| 475 |
+
"No model was supplied, defaulted to sshleifer/distilbart-cnn-12-6 and revision a4f8f3e (https://huggingface.co/sshleifer/distilbart-cnn-12-6).\n",
|
| 476 |
+
"Using a pipeline without specifying a model name and revision in production is not recommended.\n"
|
| 477 |
+
]
|
| 478 |
+
}
|
| 479 |
+
],
|
| 480 |
+
"source": [
|
| 481 |
+
"from transformers import pipeline\n",
|
| 482 |
+
"\n",
|
| 483 |
+
"summarizer = pipeline(\"summarization\")\n",
|
| 484 |
+
"summary = summarizer(\n",
|
| 485 |
+
" \"\"\"\n",
|
| 486 |
+
" America has changed dramatically during recent years. Not only has the number of \n",
|
| 487 |
+
" graduates in traditional engineering disciplines such as mechanical, civil, \n",
|
| 488 |
+
" electrical, chemical, and aeronautical engineering declined, but in most of \n",
|
| 489 |
+
" the premier American universities engineering curricula now concentrate on \n",
|
| 490 |
+
" and encourage largely the study of engineering science. As a result, there \n",
|
| 491 |
+
" are declining offerings in engineering subjects dealing with infrastructure, \n",
|
| 492 |
+
" the environment, and related issues, and greater concentration on high \n",
|
| 493 |
+
" technology subjects, largely supporting increasingly complex scientific \n",
|
| 494 |
+
" developments. While the latter is important, it should not be at the expense \n",
|
| 495 |
+
" of more traditional engineering.\n",
|
| 496 |
+
"\n",
|
| 497 |
+
" Rapidly developing economies such as China and India, as well as other \n",
|
| 498 |
+
" industrial countries in Europe and Asia, continue to encourage and advance \n",
|
| 499 |
+
" the teaching of engineering. Both China and India, respectively, graduate \n",
|
| 500 |
+
" six and eight times as many traditional engineers as does the United States. \n",
|
| 501 |
+
" Other industrial countries at minimum maintain their output, while America \n",
|
| 502 |
+
" suffers an increasingly serious decline in the number of engineering graduates \n",
|
| 503 |
+
" and a lack of well-educated engineers.\n",
|
| 504 |
+
"\"\"\"\n",
|
| 505 |
+
")"
|
| 506 |
+
]
|
| 507 |
+
},
|
| 508 |
+
{
|
| 509 |
+
"cell_type": "code",
|
| 510 |
+
"execution_count": 10,
|
| 511 |
+
"metadata": {},
|
| 512 |
+
"outputs": [
|
| 513 |
+
{
|
| 514 |
+
"name": "stdout",
|
| 515 |
+
"output_type": "stream",
|
| 516 |
+
"text": [
|
| 517 |
+
" America has changed dramatically during recent years . The number of engineering graduates in the U.S. has declined in traditional engineering disciplines such as mechanical, civil, electrical, chemical, and aeronautical engineering . Rapidly developing economies such as China and India continue to encourage and advance the teaching of engineering .\n"
|
| 518 |
+
]
|
| 519 |
+
}
|
| 520 |
+
],
|
| 521 |
+
"source": [
|
| 522 |
+
"print(summary[0]['summary_text'])"
|
| 523 |
+
]
|
| 524 |
+
},
|
| 525 |
+
{
|
| 526 |
+
"cell_type": "markdown",
|
| 527 |
+
"metadata": {},
|
| 528 |
+
"source": [
|
| 529 |
+
"### Translation"
|
| 530 |
+
]
|
| 531 |
+
},
|
| 532 |
+
{
|
| 533 |
+
"cell_type": "code",
|
| 534 |
+
"execution_count": 11,
|
| 535 |
+
"metadata": {},
|
| 536 |
+
"outputs": [],
|
| 537 |
+
"source": [
|
| 538 |
+
"import sentencepiece"
|
| 539 |
+
]
|
| 540 |
+
},
|
| 541 |
+
{
|
| 542 |
+
"cell_type": "code",
|
| 543 |
+
"execution_count": 12,
|
| 544 |
+
"metadata": {},
|
| 545 |
+
"outputs": [
|
| 546 |
+
{
|
| 547 |
+
"data": {
|
| 548 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 549 |
+
"model_id": "e7521143fb794a39b66b0f5d00f9fac8",
|
| 550 |
+
"version_major": 2,
|
| 551 |
+
"version_minor": 0
|
| 552 |
+
},
|
| 553 |
+
"text/plain": [
|
| 554 |
+
"source.spm: 0%| | 0.00/802k [00:00<?, ?B/s]"
|
| 555 |
+
]
|
| 556 |
+
},
|
| 557 |
+
"metadata": {},
|
| 558 |
+
"output_type": "display_data"
|
| 559 |
+
},
|
| 560 |
+
{
|
| 561 |
+
"name": "stderr",
|
| 562 |
+
"output_type": "stream",
|
| 563 |
+
"text": [
|
| 564 |
+
"c:\\Users\\ACER\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\huggingface_hub\\file_download.py:147: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\\Users\\ACER\\.cache\\huggingface\\hub\\models--Helsinki-NLP--opus-mt-fr-en. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.\n",
|
| 565 |
+
"To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
|
| 566 |
+
" warnings.warn(message)\n"
|
| 567 |
+
]
|
| 568 |
+
},
|
| 569 |
+
{
|
| 570 |
+
"data": {
|
| 571 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 572 |
+
"model_id": "d658b08296d64e4081ac272272b520d7",
|
| 573 |
+
"version_major": 2,
|
| 574 |
+
"version_minor": 0
|
| 575 |
+
},
|
| 576 |
+
"text/plain": [
|
| 577 |
+
"target.spm: 0%| | 0.00/778k [00:00<?, ?B/s]"
|
| 578 |
+
]
|
| 579 |
+
},
|
| 580 |
+
"metadata": {},
|
| 581 |
+
"output_type": "display_data"
|
| 582 |
+
},
|
| 583 |
+
{
|
| 584 |
+
"data": {
|
| 585 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 586 |
+
"model_id": "92ea52e7b8d446e7a21d844815c4045b",
|
| 587 |
+
"version_major": 2,
|
| 588 |
+
"version_minor": 0
|
| 589 |
+
},
|
| 590 |
+
"text/plain": [
|
| 591 |
+
"vocab.json: 0%| | 0.00/1.34M [00:00<?, ?B/s]"
|
| 592 |
+
]
|
| 593 |
+
},
|
| 594 |
+
"metadata": {},
|
| 595 |
+
"output_type": "display_data"
|
| 596 |
+
},
|
| 597 |
+
{
|
| 598 |
+
"name": "stderr",
|
| 599 |
+
"output_type": "stream",
|
| 600 |
+
"text": [
|
| 601 |
+
"c:\\Users\\ACER\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\transformers\\models\\marian\\tokenization_marian.py:175: UserWarning: Recommended: pip install sacremoses.\n",
|
| 602 |
+
" warnings.warn(\"Recommended: pip install sacremoses.\")\n"
|
| 603 |
+
]
|
| 604 |
+
},
|
| 605 |
+
{
|
| 606 |
+
"data": {
|
| 607 |
+
"text/plain": [
|
| 608 |
+
"[{'translation_text': 'This course is produced by Hugging Face.'}]"
|
| 609 |
+
]
|
| 610 |
+
},
|
| 611 |
+
"execution_count": 12,
|
| 612 |
+
"metadata": {},
|
| 613 |
+
"output_type": "execute_result"
|
| 614 |
+
}
|
| 615 |
+
],
|
| 616 |
+
"source": [
|
| 617 |
+
"import sentencepiece\n",
|
| 618 |
+
"from transformers import pipeline\n",
|
| 619 |
+
"\n",
|
| 620 |
+
"translator = pipeline(\"translation\", model=\"Helsinki-NLP/opus-mt-fr-en\")\n",
|
| 621 |
+
"translator(\"Ce cours est produit par Hugging Face.\")"
|
| 622 |
+
]
|
| 623 |
+
},
|
| 624 |
+
{
|
| 625 |
+
"cell_type": "markdown",
|
| 626 |
+
"metadata": {},
|
| 627 |
+
"source": [
|
| 628 |
+
"## Bias and limitations"
|
| 629 |
+
]
|
| 630 |
+
},
|
| 631 |
+
{
|
| 632 |
+
"cell_type": "code",
|
| 633 |
+
"execution_count": 13,
|
| 634 |
+
"metadata": {},
|
| 635 |
+
"outputs": [
|
| 636 |
+
{
|
| 637 |
+
"name": "stderr",
|
| 638 |
+
"output_type": "stream",
|
| 639 |
+
"text": [
|
| 640 |
+
"BertForMaskedLM has generative capabilities, as `prepare_inputs_for_generation` is explicitly overwritten. However, it doesn't directly inherit from `GenerationMixin`. From πv4.50π onwards, `PreTrainedModel` will NOT inherit from `GenerationMixin`, and this model will lose the ability to call `generate` and other related functions.\n",
|
| 641 |
+
" - If you're using `trust_remote_code=True`, you can get rid of this warning by loading the model with an auto class. See https://huggingface.co/docs/transformers/en/model_doc/auto#auto-classes\n",
|
| 642 |
+
" - If you are the owner of the model architecture code, please modify your model class such that it inherits from `GenerationMixin` (after `PreTrainedModel`, otherwise you'll get an exception).\n",
|
| 643 |
+
" - If you are not the owner of the model architecture class, please contact the model code owner to update it.\n",
|
| 644 |
+
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForMaskedLM: ['bert.pooler.dense.bias', 'bert.pooler.dense.weight', 'cls.seq_relationship.bias', 'cls.seq_relationship.weight']\n",
|
| 645 |
+
"- This IS expected if you are initializing BertForMaskedLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
| 646 |
+
"- This IS NOT expected if you are initializing BertForMaskedLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
|
| 647 |
+
]
|
| 648 |
+
},
|
| 649 |
+
{
|
| 650 |
+
"name": "stdout",
|
| 651 |
+
"output_type": "stream",
|
| 652 |
+
"text": [
|
| 653 |
+
"['carpenter', 'lawyer', 'farmer', 'businessman', 'doctor']\n",
|
| 654 |
+
"['nurse', 'maid', 'teacher', 'waitress', 'prostitute']\n"
|
| 655 |
+
]
|
| 656 |
+
}
|
| 657 |
+
],
|
| 658 |
+
"source": [
|
| 659 |
+
"from transformers import pipeline\n",
|
| 660 |
+
"\n",
|
| 661 |
+
"unmasker = pipeline(\"fill-mask\", model=\"bert-base-uncased\")\n",
|
| 662 |
+
"result = unmasker(\"This man works as a [MASK].\")\n",
|
| 663 |
+
"print([r[\"token_str\"] for r in result])\n",
|
| 664 |
+
"\n",
|
| 665 |
+
"result = unmasker(\"This woman works as a [MASK].\")\n",
|
| 666 |
+
"print([r[\"token_str\"] for r in result])"
|
| 667 |
+
]
|
| 668 |
+
}
|
| 669 |
+
],
|
| 670 |
+
"metadata": {
|
| 671 |
+
"kernelspec": {
|
| 672 |
+
"display_name": "huggingface-nlp",
|
| 673 |
+
"language": "python",
|
| 674 |
+
"name": "python3"
|
| 675 |
+
},
|
| 676 |
+
"language_info": {
|
| 677 |
+
"codemirror_mode": {
|
| 678 |
+
"name": "ipython",
|
| 679 |
+
"version": 3
|
| 680 |
+
},
|
| 681 |
+
"file_extension": ".py",
|
| 682 |
+
"mimetype": "text/x-python",
|
| 683 |
+
"name": "python",
|
| 684 |
+
"nbconvert_exporter": "python",
|
| 685 |
+
"pygments_lexer": "ipython3",
|
| 686 |
+
"version": "3.10.16"
|
| 687 |
+
}
|
| 688 |
+
},
|
| 689 |
+
"nbformat": 4,
|
| 690 |
+
"nbformat_minor": 2
|
| 691 |
+
}
|
pages/1_π§ _Sentiment Analysis.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import streamlit as st
|
| 4 |
+
from torch.nn import Softmax
|
| 5 |
+
import plotly.graph_objects as go
|
| 6 |
+
from transformers import AutoConfig, AutoTokenizer
|
| 7 |
+
from transformers import AutoModelForSequenceClassification
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
st.set_page_config(
|
| 11 |
+
page_title="Sentiment Analysis",
|
| 12 |
+
page_icon="π§ ")
|
| 13 |
+
|
| 14 |
+
st.write("# Sentiment Analysis")
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment-latest"
|
| 18 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
| 19 |
+
config = AutoConfig.from_pretrained(MODEL)
|
| 20 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
| 21 |
+
|
| 22 |
+
user_input = st.text_input('What\'s in your mind?')
|
| 23 |
+
|
| 24 |
+
if st.button("Perform Sentiment Analysis"):
|
| 25 |
+
if not user_input:
|
| 26 |
+
st.warning("Please enter some text!")
|
| 27 |
+
else:
|
| 28 |
+
try:
|
| 29 |
+
st.write("## Sentiment Plot")
|
| 30 |
+
encoded_input = tokenizer(user_input, return_tensors='pt')
|
| 31 |
+
output = model(**encoded_input)
|
| 32 |
+
scores = output[0][0].detach().numpy()
|
| 33 |
+
softmax = Softmax(dim=1)
|
| 34 |
+
scores = softmax(torch.tensor([scores]))
|
| 35 |
+
scores = scores.numpy()[0]
|
| 36 |
+
|
| 37 |
+
categories = []
|
| 38 |
+
probabilities = []
|
| 39 |
+
ranking = np.argsort(scores)
|
| 40 |
+
ranking = ranking[::-1]
|
| 41 |
+
for i in range(scores.shape[0]):
|
| 42 |
+
categories.append(config.id2label[ranking[i]])
|
| 43 |
+
probabilities.append(np.round(float(scores[ranking[i]]), 4).tolist())
|
| 44 |
+
|
| 45 |
+
res = [[cat, sco] for cat,sco in zip(categories, probabilities)]
|
| 46 |
+
res.sort(key=lambda x: x[0], reverse=True)
|
| 47 |
+
probabilities = [i[1] for i in res]
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
# Create the bar chart
|
| 51 |
+
fig = go.Figure(data=[
|
| 52 |
+
go.Bar(
|
| 53 |
+
x=['Positive', 'Neutral', 'Negative'],
|
| 54 |
+
y=probabilities,
|
| 55 |
+
marker_color=['green', 'blue', 'red'], # Colors for each category
|
| 56 |
+
text=probabilities, # Show values on the bars
|
| 57 |
+
textposition='auto'
|
| 58 |
+
)
|
| 59 |
+
])
|
| 60 |
+
|
| 61 |
+
# Customize layout
|
| 62 |
+
fig.update_layout(
|
| 63 |
+
# title="Sentiment Analysis Results",
|
| 64 |
+
xaxis_title="Sentiment Categories",
|
| 65 |
+
yaxis_title="Probability",
|
| 66 |
+
template="plotly_white"
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
# Show the figure
|
| 70 |
+
|
| 71 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 72 |
+
except Exception as e:
|
| 73 |
+
st.error("An error occurred: " + str(e))
|
pages/2_π_Fill Mask.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
|
| 5 |
+
st.set_page_config(
|
| 6 |
+
page_title="Fill Mask",
|
| 7 |
+
page_icon="π")
|
| 8 |
+
|
| 9 |
+
st.write("# Fill Mask")
|
| 10 |
+
unmasker = pipeline('fill-mask', model='bert-base-uncased')
|
| 11 |
+
|
| 12 |
+
st.write("Enter a sentence with a masked word using `[MASK]`.")
|
| 13 |
+
user_input = st.text_input("Input your sentence:", "The capital of France is [MASK].")
|
| 14 |
+
|
| 15 |
+
num_responses = st.slider("Select the number of predictions:", min_value=1, max_value=20, value=5)
|
| 16 |
+
|
| 17 |
+
if st.button("Generate Predictions"):
|
| 18 |
+
if "[MASK]" not in user_input:
|
| 19 |
+
st.error("Please include '[MASK]' in your input sentence.")
|
| 20 |
+
else:
|
| 21 |
+
try:
|
| 22 |
+
st.write("### Predictions:")
|
| 23 |
+
predictions = unmasker(user_input, top_k=num_responses)
|
| 24 |
+
for i, prediction in enumerate(predictions):
|
| 25 |
+
token = prediction['token_str']
|
| 26 |
+
score = prediction['score']
|
| 27 |
+
user_input_before,user_input_after = user_input.split("[MASK]")
|
| 28 |
+
user_input_with_token = user_input_before + "`" + token + "`"+ user_input_after
|
| 29 |
+
st.write(user_input_with_token)
|
| 30 |
+
except Exception as e:
|
| 31 |
+
st.error(f"An error occurred: {e}")
|
pages/3_π_Zero Shot Classification.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import plotly.graph_objects as go
|
| 4 |
+
from transformers import pipeline
|
| 5 |
+
|
| 6 |
+
st.set_page_config(
|
| 7 |
+
page_title="Fill Mask",
|
| 8 |
+
page_icon="π")
|
| 9 |
+
|
| 10 |
+
# App Title
|
| 11 |
+
st.title("Zero-Shot Text Classification")
|
| 12 |
+
|
| 13 |
+
# Initialize the zero-shot classification pipeline
|
| 14 |
+
zero_shot = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
| 15 |
+
|
| 16 |
+
# Colors
|
| 17 |
+
colors = ['rgba(24, 203, 162, 1)', 'rgba(34, 180, 20, 1)', 'rgba(231, 110, 212, 1)', 'rgba(191, 206, 164, 1)', 'rgba(100, 233, 42, 1)',
|
| 18 |
+
'rgba(185, 222, 92, 1)', 'rgba(27, 157, 138, 1)', 'rgba(212, 207, 155, 1)', 'rgba(172, 202, 164, 1)', 'rgba(47, 65, 177, 1)',
|
| 19 |
+
'rgba(26, 44, 233, 1)', 'rgba(65, 242, 9, 1)', 'rgba(171, 50, 253, 1)', 'rgba(125, 201, 227, 1)', 'rgba(135, 196, 15, 1)',
|
| 20 |
+
'rgba(114, 106, 242, 1)', 'rgba(176, 50, 34, 1)', 'rgba(100, 159, 247, 1)', 'rgba(246, 103, 72, 1)', 'rgba(180, 180, 5, 1)',
|
| 21 |
+
'rgba(64, 29, 164, 1)', 'rgba(65, 192, 5, 1)', 'rgba(149, 97, 155, 1)', 'rgba(210, 2, 107, 1)', 'rgba(70, 203, 162, 1)',
|
| 22 |
+
'rgba(68, 74, 64, 1)', 'rgba(164, 42, 173, 1)', 'rgba(220, 37, 239, 1)', 'rgba(76, 89, 84, 1)', 'rgba(29, 190, 84, 1)',
|
| 23 |
+
'rgba(180, 35, 240, 1)', 'rgba(222, 72, 217, 1)', 'rgba(203, 80, 243, 1)', 'rgba(121, 164, 68, 1)', 'rgba(107, 218, 79, 1)',
|
| 24 |
+
'rgba(152, 225, 65, 1)', 'rgba(57, 170, 43, 1)', 'rgba(77, 131, 61, 1)', 'rgba(145, 101, 161, 1)', 'rgba(115, 77, 3, 1)',
|
| 25 |
+
'rgba(29, 159, 63, 1)', 'rgba(71, 105, 200, 1)', 'rgba(98, 78, 55, 1)', 'rgba(242, 159, 60, 1)', 'rgba(175, 67, 54, 1)',
|
| 26 |
+
'rgba(120, 246, 81, 1)', 'rgba(216, 132, 219, 1)', 'rgba(82, 77, 251, 1)', 'rgba(213, 29, 120, 1)', 'rgba(252, 90, 31, 1)',
|
| 27 |
+
'rgba(194, 181, 168, 1)', 'rgba(246, 60, 189, 1)', 'rgba(22, 50, 26, 1)', 'rgba(54, 11, 134, 1)', 'rgba(27, 103, 59, 1)',
|
| 28 |
+
'rgba(234, 96, 187, 1)', 'rgba(167, 157, 215, 1)', 'rgba(104, 1, 252, 1)', 'rgba(76, 121, 131, 1)', 'rgba(65, 250, 218, 1)',
|
| 29 |
+
'rgba(219, 59, 127, 1)', 'rgba(18, 242, 194, 1)', 'rgba(14, 132, 131, 1)', 'rgba(82, 68, 61, 1)', 'rgba(109, 229, 43, 1)',
|
| 30 |
+
'rgba(202, 96, 66, 1)', 'rgba(216, 112, 64, 1)', 'rgba(101, 215, 114, 1)', 'rgba(85, 234, 109, 1)', 'rgba(17, 43, 113, 1)',
|
| 31 |
+
'rgba(104, 132, 5, 1)', 'rgba(23, 177, 214, 1)', 'rgba(112, 131, 160, 1)', 'rgba(142, 43, 188, 1)', 'rgba(189, 61, 176, 1)',
|
| 32 |
+
'rgba(196, 198, 61, 1)', 'rgba(253, 176, 165, 1)', 'rgba(113, 143, 126, 1)', 'rgba(122, 156, 220, 1)', 'rgba(221, 11, 29, 1)',
|
| 33 |
+
'rgba(233, 200, 5, 1)', 'rgba(232, 176, 217, 1)', 'rgba(199, 6, 130, 1)', 'rgba(140, 118, 154, 1)', 'rgba(177, 46, 36, 1)',
|
| 34 |
+
'rgba(244, 81, 66, 1)', 'rgba(94, 99, 24, 1)', 'rgba(159, 90, 50, 1)', 'rgba(67, 144, 236, 1)', 'rgba(78, 202, 143, 1)',
|
| 35 |
+
'rgba(13, 116, 114, 1)', 'rgba(139, 194, 124, 1)', 'rgba(174, 63, 214, 1)', 'rgba(84, 114, 130, 1)', 'rgba(143, 208, 199, 1)',
|
| 36 |
+
'rgba(27, 60, 225, 1)', 'rgba(69, 228, 28, 1)', 'rgba(167, 157, 10, 1)', 'rgba(61, 185, 55, 1)', 'rgba(143, 52, 233, 1)']
|
| 37 |
+
|
| 38 |
+
colors = np.array(colors)
|
| 39 |
+
|
| 40 |
+
# Input Section
|
| 41 |
+
st.write("Enter a sentence or text to classify and provide possible labels.")
|
| 42 |
+
|
| 43 |
+
user_input = st.text_input("Input your text:", "Streamlit is an amazing tool for building web apps.")
|
| 44 |
+
labels_input = st.text_input("Enter possible labels (comma-separated):", "technology, finance, health")
|
| 45 |
+
|
| 46 |
+
# Process and Display Results
|
| 47 |
+
if st.button("Classify Text"):
|
| 48 |
+
labels = [label.strip().title() for label in labels_input.split(",") if label.strip()]
|
| 49 |
+
if not user_input or not labels:
|
| 50 |
+
st.error("Please provide both text and at least one label.")
|
| 51 |
+
else:
|
| 52 |
+
try:
|
| 53 |
+
st.write("## Classification Results:")
|
| 54 |
+
probabilities = []
|
| 55 |
+
result = zero_shot(user_input, labels)
|
| 56 |
+
|
| 57 |
+
for label, score in zip(result['labels'], result['scores']):
|
| 58 |
+
probabilities.append(round(score, 2))
|
| 59 |
+
|
| 60 |
+
fig = go.Figure(data=[
|
| 61 |
+
go.Bar(
|
| 62 |
+
x=labels,
|
| 63 |
+
y=probabilities,
|
| 64 |
+
marker_color=np.random.choice(colors, len(labels)).tolist(), # Colors for each category
|
| 65 |
+
text=probabilities, # Show values on the bars
|
| 66 |
+
textposition='auto'
|
| 67 |
+
)
|
| 68 |
+
])
|
| 69 |
+
|
| 70 |
+
# Customize layout
|
| 71 |
+
fig.update_layout(
|
| 72 |
+
# title="Sentiment Analysis Results",
|
| 73 |
+
xaxis_title="Label",
|
| 74 |
+
yaxis_title="Probability",
|
| 75 |
+
template="seaborn",
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
# Show the figure
|
| 79 |
+
|
| 80 |
+
st.plotly_chart(fig, use_container_width=True, theme=None)
|
| 81 |
+
|
| 82 |
+
except Exception as e:
|
| 83 |
+
st.error(f"An error occurred: {e}")
|
| 84 |
+
|
pages/4_β_Question Answer.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
st.set_page_config(
|
| 6 |
+
page_title="Question Answer",
|
| 7 |
+
page_icon="β")
|
| 8 |
+
|
| 9 |
+
# App Name
|
| 10 |
+
st.write("# Question Answer")
|
| 11 |
+
|
| 12 |
+
# Model
|
| 13 |
+
qa_model = pipeline("question-answering", model="distilbert/distilbert-base-cased-distilled-squad")
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
st.write("Provide context and question.")
|
| 17 |
+
|
| 18 |
+
question = st.text_input("Enter your question:")
|
| 19 |
+
context = st.text_input("Enter the context:")
|
| 20 |
+
|
| 21 |
+
if st.button("Generate Answer"):
|
| 22 |
+
if not (question or context):
|
| 23 |
+
st.warning("Provide both question and context.")
|
| 24 |
+
else:
|
| 25 |
+
try:
|
| 26 |
+
st.write("## Answer")
|
| 27 |
+
ans = qa_model(question=question, context=context)
|
| 28 |
+
st.write(ans['answer'])
|
| 29 |
+
except Exception as e:
|
| 30 |
+
st.error(f"An error occurred: {e}")
|
| 31 |
+
|
pages/5_βοΈ_Text_Summarization.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
st.set_page_config(
|
| 6 |
+
page_title="Question Answer",
|
| 7 |
+
page_icon="βοΈ")
|
| 8 |
+
|
| 9 |
+
st.write("# Text Summarization")
|
| 10 |
+
|
| 11 |
+
# Model
|
| 12 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 13 |
+
|
| 14 |
+
user_input = st.text_area("Enter text to summarize")
|
| 15 |
+
|
| 16 |
+
if st.button("Generate Predictions"):
|
| 17 |
+
try:
|
| 18 |
+
st.write("## Summary:")
|
| 19 |
+
generated_summary = summarizer(user_input)
|
| 20 |
+
st.write(generated_summary[0]["summary_text"])
|
| 21 |
+
except Exception as e:
|
| 22 |
+
st.error(f"An error occurred: {e}")
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
streamlit
|
| 3 |
+
torch
|
| 4 |
+
plotly
|
π _Home.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
|
| 5 |
+
st.set_page_config(
|
| 6 |
+
page_title="Transformers in Action",
|
| 7 |
+
page_icon="π ",
|
| 8 |
+
)
|
| 9 |
+
|
| 10 |
+
st.sidebar.success("Select a Demo above.")
|
| 11 |
+
|
| 12 |
+
st.markdown(
|
| 13 |
+
"""
|
| 14 |
+
# **Transformers in Action**
|
| 15 |
+
**Welcome to the Future of AI!**
|
| 16 |
+
|
| 17 |
+
Discover the incredible power of modern **Transformer models** and how they can revolutionize the way you approach everyday tasks. Whether you want to analyze sentiment, fill in missing text, or classify data with zero-shot precision, this interactive app provides a seamless playground to explore Hugging Face models in action.
|
| 18 |
+
|
| 19 |
+
### **What Can You Do Here?**
|
| 20 |
+
π§ **Sentiment Analysis** - Understand emotions in text, from happiness to frustration.
|
| 21 |
+
π **Fill Mask** - Predict missing words with precision using intelligent language models.
|
| 22 |
+
π **Zero-Shot Classification** - Classify text into categories without pre-training.
|
| 23 |
+
β **Question Answering** - Get instant answers to your queries with context-aware AI.
|
| 24 |
+
βοΈ **Text Summarization** - Condense lengthy content into concise summaries.
|
| 25 |
+
|
| 26 |
+
**Ready to experience the magic of AI?**
|
| 27 |
+
Pick a task from the left, explore, and bring your ideas to life!
|
| 28 |
+
|
| 29 |
+
"""
|
| 30 |
+
)
|