ahmadouna commited on
Commit
b8e55ef
·
verified ·
1 Parent(s): 336a6cf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -15
app.py CHANGED
@@ -41,23 +41,23 @@ else:
41
  st.write("Veuillez entrer du texte pour l'analyse.")
42
 
43
  # Calculer les métriques de performance (vous devez ajuster ces lignes selon votre tâche)
44
- if text and candidate_labels:
45
- inputs = df["text"].tolist()
46
- true_labels = df["label"].tolist()
47
- predictions = classifier(inputs, candidate_labels, hypothesis_template=hypothesis_template)
48
- predicted_labels = [result['labels'][0] for result in predictions]
49
 
50
- accuracy = accuracy_score(true_labels, predicted_labels)
51
- precision = precision_score(true_labels, predicted_labels, average='binary')
52
- recall = recall_score(true_labels, predicted_labels, average='binary')
53
- f1 = f1_score(true_labels, predicted_labels, average='binary')
54
- balanced_accuracy = balanced_accuracy_score(true_labels, predicted_labels)
55
-
56
- # Afficher les métriques sous forme de tableau
57
- st.header("Métriques de Performance")
58
- metrics_df = pd.DataFrame({
59
  "Métrique": ["Accuracy", "Precision", "Recall", "F1-score", "Balanced Accuracy"],
60
  "Valeur": [accuracy, precision, recall, f1, balanced_accuracy]
61
  })
62
- st.table(metrics_df)
63
 
 
41
  st.write("Veuillez entrer du texte pour l'analyse.")
42
 
43
  # Calculer les métriques de performance (vous devez ajuster ces lignes selon votre tâche)
44
+
45
+ inputs = df["text"].tolist()
46
+ true_labels = df["label"].tolist()
47
+ predictions = classifier(inputs, candidate_labels, hypothesis_template=hypothesis_template)
48
+ predicted_labels = [result['labels'][0] for result in predictions]
49
 
50
+ accuracy = accuracy_score(true_labels, predicted_labels)
51
+ precision = precision_score(true_labels, predicted_labels, average='binary')
52
+ recall = recall_score(true_labels, predicted_labels, average='binary')
53
+ f1 = f1_score(true_labels, predicted_labels, average='binary')
54
+ balanced_accuracy = balanced_accuracy_score(true_labels, predicted_labels)
55
+
56
+ # Afficher les métriques sous forme de tableau
57
+ st.header("Métriques de Performance")
58
+ metrics_df = pd.DataFrame({
59
  "Métrique": ["Accuracy", "Precision", "Recall", "F1-score", "Balanced Accuracy"],
60
  "Valeur": [accuracy, precision, recall, f1, balanced_accuracy]
61
  })
62
+ st.table(metrics_df)
63