Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,20 @@
|
|
1 |
|
2 |
import streamlit as st
|
3 |
from transformers import pipeline
|
4 |
-
from textblob import TextBlob
|
5 |
""""
|
6 |
pipe = pipeline('sentiment-analysis')
|
7 |
st.title("Analyse de sentiment")
|
8 |
#Textbox for text user is entering
|
9 |
-
|
10 |
|
11 |
out = pipe(text)
|
12 |
|
13 |
st.write("Sentiment du text: ")
|
14 |
st.write(out)
|
15 |
"""
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
23 |
-
model = transformers.AutoModelForCausalLM.from_pretrained(model_name,
|
24 |
-
device_map="auto",
|
25 |
-
torch_dtype=torch.bfloat16,
|
26 |
-
load_in_4bit=True # For efficient inference, if supported by the GPU card
|
27 |
-
)
|
28 |
-
|
29 |
-
pipeline = transformers.pipeline("text-generation", model=model, tokenizer=tokenizer)
|
30 |
-
generation_kwargs = dict(
|
31 |
-
num_return_sequences=1, # Number of variants to generate.
|
32 |
-
return_full_text= False, # Do not include the prompt in the generated text.
|
33 |
-
max_new_tokens=200, # Maximum length for the output text.
|
34 |
-
do_sample=True, top_k=10, temperature=1.0, # Sampling parameters.
|
35 |
-
pad_token_id=tokenizer.eos_token_id, # Just to avoid a harmless warning.
|
36 |
-
)
|
37 |
-
|
38 |
-
prompt = """\
|
39 |
-
- Bonjour Dominique, qu'allez-vous nous cuisiner aujourd'hui ?
|
40 |
-
- Bonjour Camille,\
|
41 |
-
"""
|
42 |
-
completions = pipeline(prompt, **generation_kwargs)
|
43 |
-
for completion in completions:
|
44 |
-
print(prompt + " […]" + completion['generated_text'])
|
45 |
-
|
|
|
1 |
|
2 |
import streamlit as st
|
3 |
from transformers import pipeline
|
|
|
4 |
""""
|
5 |
pipe = pipeline('sentiment-analysis')
|
6 |
st.title("Analyse de sentiment")
|
7 |
#Textbox for text user is entering
|
8 |
+
|
9 |
|
10 |
out = pipe(text)
|
11 |
|
12 |
st.write("Sentiment du text: ")
|
13 |
st.write(out)
|
14 |
"""
|
15 |
+
classifier = pipeline("zero-shot-classification",
|
16 |
+
model="morit/french_xlm_xnli")
|
17 |
+
text = st.text_input('Entrer le texte a analyser')
|
18 |
+
andidate_labels = ["politique", "sport"]
|
19 |
+
hypothesis_template = "Cet example est {}"
|
20 |
+
st.write(classifier(text, candidate_labels, hypothesis_template=hypothesis_template))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|