clifford2.1v / app.py
ahmadalfakeh's picture
Update app.py
d1d1695 verified
import gradio as gr
from huggingface_hub import InferenceClient
# Initialize the Hugging Face Inference Client
client = InferenceClient(model="meta-llama/Meta-Llama-3.1-405B-FP8")
# Define the response generation function
def respond(message, history, system_message, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": system_message}]
# Add previous messages to the conversation
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
# Add the new user message
messages.append({"role": "user", "content": message})
response = ""
# Generate the response using the model
for message in client.chat_completion(
messages=messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
# Define the ChatGPT-like interface
with gr.Blocks(css=".gradio-container {max-width: 900px; margin: auto;}") as demo:
gr.Markdown("<h1 style='text-align: center;'>ChatGPT-like Interface</h1>")
chatbot = gr.Chatbot(height=500)
with gr.Row():
with gr.Column(scale=6):
msg = gr.Textbox(
show_label=False,
placeholder="Type your message here...",
)
with gr.Column(scale=1, min_width=100):
send_btn = gr.Button("Send")
with gr.Accordion("Settings", open=False):
system_message = gr.Textbox(value="You are a friendly Chatbot.", label="System message")
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")