|
import gradio as gr |
|
import torchaudio |
|
import torch |
|
import numpy as np |
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
RAVE_MODELS = { |
|
"Guitar": "guitar_iil_b2048_r48000_z16.ts", |
|
"Soprano Sax": "sax_soprano_franziskaschroeder_b2048_r48000_z20.ts", |
|
"Organ (Archive)": "organ_archive_b2048_r48000_z16.ts", |
|
"Organ (Bach)": "organ_bach_b2048_r48000_z16.ts", |
|
"Voice Multivoice": "voice-multi-b2048-r48000-z11.ts", |
|
"Birds Dawn Chorus": "birds_dawnchorus_b2048_r48000_z8.ts", |
|
"Magnets": "magnets_b2048_r48000_z8.ts", |
|
"Whale Songs": "humpbacks_pondbrain_b2048_r48000_z20.ts" |
|
} |
|
|
|
MODEL_CACHE = {} |
|
|
|
def load_rave_model(model_name): |
|
"""Load TorchScript RAVE model from Hugging Face Hub.""" |
|
if model_name in MODEL_CACHE: |
|
return MODEL_CACHE[model_name] |
|
|
|
model_file = hf_hub_download( |
|
repo_id="Intelligent-Instruments-Lab/rave-models", |
|
filename=RAVE_MODELS[model_name] |
|
) |
|
|
|
model = torch.jit.load(model_file, map_location="cpu") |
|
model.eval() |
|
MODEL_CACHE[model_name] = model |
|
return model |
|
|
|
def apply_rave(audio, model_name): |
|
"""Apply selected RAVE model to uploaded audio.""" |
|
model = load_rave_model(model_name) |
|
|
|
|
|
audio_tensor = torch.tensor(audio[0]).unsqueeze(0) |
|
sr = audio[1] |
|
|
|
|
|
if sr != 48000: |
|
audio_tensor = torchaudio.functional.resample(audio_tensor, sr, 48000) |
|
sr = 48000 |
|
|
|
with torch.no_grad(): |
|
|
|
z = model.encode(audio_tensor) |
|
processed_audio = model.decode(z) |
|
|
|
return (processed_audio.squeeze().cpu().numpy(), sr) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## π RAVE Style Transfer on Stems") |
|
gr.Markdown("Upload audio, pick a RAVE model, and get a transformed version.") |
|
|
|
with gr.Row(): |
|
audio_input = gr.Audio(type="numpy", label="Upload Audio", sources=["upload", "microphone"]) |
|
model_selector = gr.Dropdown(list(RAVE_MODELS.keys()), label="Select Style", value="Guitar") |
|
|
|
with gr.Row(): |
|
output_audio = gr.Audio(type="numpy", label="Transformed Audio") |
|
|
|
process_btn = gr.Button("Apply Style Transfer") |
|
process_btn.click(fn=apply_rave, inputs=[audio_input, model_selector], outputs=output_audio) |
|
|
|
demo.launch() |
|
|