import traceback import logging from typing import Optional import spaces import gradio as gr import numpy as np import torch from PIL import Image import io import re import base64, os from util.utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img from util.som import MarkHelper, plot_boxes_with_marks, plot_circles_with_marks from util.process_utils import pred_2_point, extract_bbox, extract_mark_id import torch from PIL import Image from huggingface_hub import snapshot_download import torch from transformers import AutoModelForCausalLM from transformers import AutoProcessor logger = logging.getLogger() logger.setLevel(logging.WARNING) if not logger.handlers: handler = logging.StreamHandler() handler.setFormatter(logging.Formatter("%(asctime)s [%(levelname)s] %(name)s: %(message)s")) logger.addHandler(handler) # Define repository and local directory repo_id = "microsoft/OmniParser-v2.0" # HF repo local_dir = "weights" # Target local directory dtype = torch.bfloat16 DEVICE = torch.device('cuda') som_generator = MarkHelper() magma_som_prompt = "\nIn this view I need to click a button to \"{}\"? Provide the coordinates and the mark index of the containing bounding box if applicable." magma_qa_prompt = "\n{} Answer the question briefly." magma_model_id = "microsoft/Magma-8B" magam_model = AutoModelForCausalLM.from_pretrained(magma_model_id, trust_remote_code=True, torch_dtype=dtype) magma_processor = AutoProcessor.from_pretrained(magma_model_id, trust_remote_code=True) magam_model.to(DEVICE) # Download the entire repository snapshot_download(repo_id=repo_id, local_dir=local_dir) logger.warning(f"Repository downloaded to: {local_dir}") yolo_model = get_yolo_model(model_path='weights/icon_detect/model.pt') caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="weights/icon_caption") # caption_model_processor = get_caption_model_processor(model_name="blip2", model_name_or_path="weights/icon_caption_blip2") MARKDOWN = """

Magma: A Foundation Model for Multimodal AI Agents

\[[arXiv Paper](https://www.arxiv.org/pdf/2502.13130)\]   \[[Project Page](https://microsoft.github.io/Magma/)\]   \[[Github Repo](https://github.com/microsoft/Magma)\]   \[[Hugging Face Model](https://huggingface.co/microsoft/Magma-8B)\]   This demo is powered by [Gradio](https://gradio.app/) and uses [OmniParserv2](https://github.com/microsoft/OmniParser) to generate [Set-of-Mark prompts](https://github.com/microsoft/SoM). The demo supports three modes: 1. Empty text inut: it downgrades to an OmniParser demo. 2. Text input starting with "Q:": it leads to a visual question answering demo. 3. Text input for UI navigation: it leads to a UI navigation demo.
""" DEVICE = torch.device('cuda') @spaces.GPU @torch.inference_mode() def get_som_response(instruction, image_som): prompt = magma_som_prompt.format(instruction) if magam_model.config.mm_use_image_start_end: qs = prompt.replace('', '') else: qs = prompt convs = [{"role": "user", "content": qs}] convs = [{"role": "system", "content": "You are agent that can see, talk and act."}] + convs prompt = magma_processor.tokenizer.apply_chat_template( convs, tokenize=False, add_generation_prompt=True ) inputs = magma_processor(images=[image_som], texts=prompt, return_tensors="pt") inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0) inputs['image_sizes'] = inputs['image_sizes'].unsqueeze(0) inputs = inputs.to(dtype).to(DEVICE) magam_model.generation_config.pad_token_id = magma_processor.tokenizer.pad_token_id with torch.inference_mode(): output_ids = magam_model.generate( **inputs, temperature=0.0, do_sample=False, num_beams=1, max_new_tokens=128, use_cache=True ) prompt_decoded = magma_processor.batch_decode(inputs['input_ids'], skip_special_tokens=True)[0] response = magma_processor.batch_decode(output_ids, skip_special_tokens=True)[0] response = response.replace(prompt_decoded, '').strip() return response @spaces.GPU @torch.inference_mode() def get_qa_response(instruction, image): prompt = magma_qa_prompt.format(instruction) if magam_model.config.mm_use_image_start_end: qs = prompt.replace('', '') else: qs = prompt convs = [{"role": "user", "content": qs}] convs = [{"role": "system", "content": "You are agent that can see, talk and act."}] + convs prompt = magma_processor.tokenizer.apply_chat_template( convs, tokenize=False, add_generation_prompt=True ) inputs = magma_processor(images=[image], texts=prompt, return_tensors="pt") inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0) inputs['image_sizes'] = inputs['image_sizes'].unsqueeze(0) inputs = inputs.to(dtype).to(DEVICE) magam_model.generation_config.pad_token_id = magma_processor.tokenizer.pad_token_id with torch.inference_mode(): output_ids = magam_model.generate( **inputs, temperature=0.0, do_sample=False, num_beams=1, max_new_tokens=128, use_cache=True ) prompt_decoded = magma_processor.batch_decode(inputs['input_ids'], skip_special_tokens=True)[0] response = magma_processor.batch_decode(output_ids, skip_special_tokens=True)[0] response = response.replace(prompt_decoded, '').strip() return response @spaces.GPU @torch.inference_mode() # @torch.autocast(device_type="cuda", dtype=torch.bfloat16) def process( image_input, box_threshold, iou_threshold, use_paddleocr, imgsz, instruction, ) -> Optional[Image.Image]: # image_save_path = 'imgs/saved_image_demo.png' # image_input.save(image_save_path) # image = Image.open(image_save_path) box_overlay_ratio = image_input.size[0] / 3200 draw_bbox_config = { 'text_scale': 0.8 * box_overlay_ratio, 'text_thickness': max(int(2 * box_overlay_ratio), 1), 'text_padding': max(int(3 * box_overlay_ratio), 1), 'thickness': max(int(3 * box_overlay_ratio), 1), } ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_input, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9}, use_paddleocr=use_paddleocr) text, ocr_bbox = ocr_bbox_rslt dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_input, yolo_model, BOX_TRESHOLD = box_threshold, output_coord_in_ratio=False, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=text,iou_threshold=iou_threshold, imgsz=imgsz,) parsed_content_list = '\n'.join([f'icon {i}: ' + str(v) for i,v in enumerate(parsed_content_list)]) if len(instruction) == 0: logger.warning('finish processing') image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img))) return image, str(parsed_content_list) elif instruction.startswith('Q:'): response = get_qa_response(instruction, image_input) return image_input, response # parsed_content_list = str(parsed_content_list) # convert xywh to yxhw label_coordinates_yxhw = {} for key, val in label_coordinates.items(): if val[2] < 0 or val[3] < 0: continue label_coordinates_yxhw[key] = [val[1], val[0], val[3], val[2]] image_som = plot_boxes_with_marks(image_input.copy(), [val for key, val in label_coordinates_yxhw.items()], som_generator, edgecolor=(255,0,0), fn_save=None, normalized_to_pixel=False) # convert xywh to xyxy for key, val in label_coordinates.items(): label_coordinates[key] = [val[0], val[1], val[0] + val[2], val[1] + val[3]] # normalize label_coordinates for key, val in label_coordinates.items(): label_coordinates[key] = [val[0] / image_input.size[0], val[1] / image_input.size[1], val[2] / image_input.size[0], val[3] / image_input.size[1]] magma_response = get_som_response(instruction, image_som) logger.warning("magma repsonse: %s", magma_response) # map magma_response into the mark id mark_id = extract_mark_id(magma_response) if mark_id is not None: if str(mark_id) in label_coordinates: bbox_for_mark = label_coordinates[str(mark_id)] else: bbox_for_mark = None else: bbox_for_mark = None if bbox_for_mark: # draw bbox_for_mark on the image image_som = plot_boxes_with_marks( image_input, [label_coordinates_yxhw[str(mark_id)]], som_generator, edgecolor=(255,127,111), alpha=30, fn_save=None, normalized_to_pixel=False, add_mark=False ) else: try: if 'box' in magma_response: pred_bbox = extract_bbox(magma_response) click_point = [(pred_bbox[0][0] + pred_bbox[1][0]) / 2, (pred_bbox[0][1] + pred_bbox[1][1]) / 2] click_point = [item / 1000 for item in click_point] else: click_point = pred_2_point(magma_response) # de-normalize click_point (width, height) click_point = [click_point[0] * image_input.size[0], click_point[1] * image_input.size[1]] image_som = plot_circles_with_marks( image_input, [click_point], som_generator, edgecolor=(255,127,111), linewidth=3, fn_save=None, normalized_to_pixel=False, add_mark=False ) except: image_som = image_input return image_som, str(parsed_content_list) with gr.Blocks() as demo: gr.Markdown(MARKDOWN) with gr.Row(): with gr.Column(): image_input_component = gr.Image( type='pil', label='Upload image') # set the threshold for removing the bounding boxes with low confidence, default is 0.05 with gr.Accordion("Parameters", open=False) as parameter_row: box_threshold_component = gr.Slider( label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05) # set the threshold for removing the bounding boxes with large overlap, default is 0.1 iou_threshold_component = gr.Slider( label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1) use_paddleocr_component = gr.Checkbox( label='Use PaddleOCR', value=True) imgsz_component = gr.Slider( label='Icon Detect Image Size', minimum=640, maximum=1920, step=32, value=640) # text box text_input_component = gr.Textbox(label='Text Input', placeholder='Text Input') submit_button_component = gr.Button( value='Submit', variant='primary') with gr.Column(): image_output_component = gr.Image(type='pil', label='Image Output') text_output_component = gr.Textbox(label='Parsed screen elements', placeholder='Text Output') submit_button_component.click( fn=process, inputs=[ image_input_component, box_threshold_component, iou_threshold_component, use_paddleocr_component, imgsz_component, text_input_component ], outputs=[image_output_component, text_output_component] ) # demo.launch(debug=False, show_error=True, share=True) # demo.launch(share=True, server_port=7861, server_name='0.0.0.0') demo.queue().launch(share=False)