magma-ui-agent / app.py
ahgan's picture
update logger %s
f54b643
import traceback
import logging
from typing import Optional
import spaces
import gradio as gr
import numpy as np
import torch
from PIL import Image
import io
import re
import base64, os
from util.utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img
from util.som import MarkHelper, plot_boxes_with_marks, plot_circles_with_marks
from util.process_utils import pred_2_point, extract_bbox, extract_mark_id
import torch
from PIL import Image
from huggingface_hub import snapshot_download
import torch
from transformers import AutoModelForCausalLM
from transformers import AutoProcessor
logger = logging.getLogger()
logger.setLevel(logging.WARNING)
if not logger.handlers:
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter("%(asctime)s [%(levelname)s] %(name)s: %(message)s"))
logger.addHandler(handler)
# Define repository and local directory
repo_id = "microsoft/OmniParser-v2.0" # HF repo
local_dir = "weights" # Target local directory
dtype = torch.bfloat16
DEVICE = torch.device('cuda')
som_generator = MarkHelper()
magma_som_prompt = "<image>\nIn this view I need to click a button to \"{}\"? Provide the coordinates and the mark index of the containing bounding box if applicable."
magma_qa_prompt = "<image>\n{} Answer the question briefly."
magma_model_id = "microsoft/Magma-8B"
magam_model = AutoModelForCausalLM.from_pretrained(magma_model_id, trust_remote_code=True, torch_dtype=dtype)
magma_processor = AutoProcessor.from_pretrained(magma_model_id, trust_remote_code=True)
magam_model.to(DEVICE)
# Download the entire repository
snapshot_download(repo_id=repo_id, local_dir=local_dir)
logger.warning(f"Repository downloaded to: {local_dir}")
yolo_model = get_yolo_model(model_path='weights/icon_detect/model.pt')
caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="weights/icon_caption")
# caption_model_processor = get_caption_model_processor(model_name="blip2", model_name_or_path="weights/icon_caption_blip2")
MARKDOWN = """
<div align="center">
<h2>Magma: A Foundation Model for Multimodal AI Agents</h2>
\[[arXiv Paper](https://www.arxiv.org/pdf/2502.13130)\] &nbsp; \[[Project Page](https://microsoft.github.io/Magma/)\] &nbsp; \[[Github Repo](https://github.com/microsoft/Magma)\] &nbsp; \[[Hugging Face Model](https://huggingface.co/microsoft/Magma-8B)\] &nbsp;
This demo is powered by [Gradio](https://gradio.app/) and uses [OmniParserv2](https://github.com/microsoft/OmniParser) to generate [Set-of-Mark prompts](https://github.com/microsoft/SoM).
The demo supports three modes:
1. Empty text inut: it downgrades to an OmniParser demo.
2. Text input starting with "Q:": it leads to a visual question answering demo.
3. Text input for UI navigation: it leads to a UI navigation demo.
</div>
"""
DEVICE = torch.device('cuda')
@spaces.GPU
@torch.inference_mode()
def get_som_response(instruction, image_som):
prompt = magma_som_prompt.format(instruction)
if magam_model.config.mm_use_image_start_end:
qs = prompt.replace('<image>', '<image_start><image><image_end>')
else:
qs = prompt
convs = [{"role": "user", "content": qs}]
convs = [{"role": "system", "content": "You are agent that can see, talk and act."}] + convs
prompt = magma_processor.tokenizer.apply_chat_template(
convs,
tokenize=False,
add_generation_prompt=True
)
inputs = magma_processor(images=[image_som], texts=prompt, return_tensors="pt")
inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0)
inputs['image_sizes'] = inputs['image_sizes'].unsqueeze(0)
inputs = inputs.to(dtype).to(DEVICE)
magam_model.generation_config.pad_token_id = magma_processor.tokenizer.pad_token_id
with torch.inference_mode():
output_ids = magam_model.generate(
**inputs,
temperature=0.0,
do_sample=False,
num_beams=1,
max_new_tokens=128,
use_cache=True
)
prompt_decoded = magma_processor.batch_decode(inputs['input_ids'], skip_special_tokens=True)[0]
response = magma_processor.batch_decode(output_ids, skip_special_tokens=True)[0]
response = response.replace(prompt_decoded, '').strip()
return response
@spaces.GPU
@torch.inference_mode()
def get_qa_response(instruction, image):
prompt = magma_qa_prompt.format(instruction)
if magam_model.config.mm_use_image_start_end:
qs = prompt.replace('<image>', '<image_start><image><image_end>')
else:
qs = prompt
convs = [{"role": "user", "content": qs}]
convs = [{"role": "system", "content": "You are agent that can see, talk and act."}] + convs
prompt = magma_processor.tokenizer.apply_chat_template(
convs,
tokenize=False,
add_generation_prompt=True
)
inputs = magma_processor(images=[image], texts=prompt, return_tensors="pt")
inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0)
inputs['image_sizes'] = inputs['image_sizes'].unsqueeze(0)
inputs = inputs.to(dtype).to(DEVICE)
magam_model.generation_config.pad_token_id = magma_processor.tokenizer.pad_token_id
with torch.inference_mode():
output_ids = magam_model.generate(
**inputs,
temperature=0.0,
do_sample=False,
num_beams=1,
max_new_tokens=128,
use_cache=True
)
prompt_decoded = magma_processor.batch_decode(inputs['input_ids'], skip_special_tokens=True)[0]
response = magma_processor.batch_decode(output_ids, skip_special_tokens=True)[0]
response = response.replace(prompt_decoded, '').strip()
return response
@spaces.GPU
@torch.inference_mode()
# @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def process(
image_input,
box_threshold,
iou_threshold,
use_paddleocr,
imgsz,
instruction,
) -> Optional[Image.Image]:
# image_save_path = 'imgs/saved_image_demo.png'
# image_input.save(image_save_path)
# image = Image.open(image_save_path)
box_overlay_ratio = image_input.size[0] / 3200
draw_bbox_config = {
'text_scale': 0.8 * box_overlay_ratio,
'text_thickness': max(int(2 * box_overlay_ratio), 1),
'text_padding': max(int(3 * box_overlay_ratio), 1),
'thickness': max(int(3 * box_overlay_ratio), 1),
}
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_input, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9}, use_paddleocr=use_paddleocr)
text, ocr_bbox = ocr_bbox_rslt
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_input, yolo_model, BOX_TRESHOLD = box_threshold, output_coord_in_ratio=False, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=text,iou_threshold=iou_threshold, imgsz=imgsz,)
parsed_content_list = '\n'.join([f'icon {i}: ' + str(v) for i,v in enumerate(parsed_content_list)])
if len(instruction) == 0:
logger.warning('finish processing')
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
return image, str(parsed_content_list)
elif instruction.startswith('Q:'):
response = get_qa_response(instruction, image_input)
return image_input, response
# parsed_content_list = str(parsed_content_list)
# convert xywh to yxhw
label_coordinates_yxhw = {}
for key, val in label_coordinates.items():
if val[2] < 0 or val[3] < 0:
continue
label_coordinates_yxhw[key] = [val[1], val[0], val[3], val[2]]
image_som = plot_boxes_with_marks(image_input.copy(), [val for key, val in label_coordinates_yxhw.items()], som_generator, edgecolor=(255,0,0), fn_save=None, normalized_to_pixel=False)
# convert xywh to xyxy
for key, val in label_coordinates.items():
label_coordinates[key] = [val[0], val[1], val[0] + val[2], val[1] + val[3]]
# normalize label_coordinates
for key, val in label_coordinates.items():
label_coordinates[key] = [val[0] / image_input.size[0], val[1] / image_input.size[1], val[2] / image_input.size[0], val[3] / image_input.size[1]]
magma_response = get_som_response(instruction, image_som)
logger.warning("magma repsonse: %s", magma_response)
# map magma_response into the mark id
mark_id = extract_mark_id(magma_response)
if mark_id is not None:
if str(mark_id) in label_coordinates:
bbox_for_mark = label_coordinates[str(mark_id)]
else:
bbox_for_mark = None
else:
bbox_for_mark = None
if bbox_for_mark:
# draw bbox_for_mark on the image
image_som = plot_boxes_with_marks(
image_input,
[label_coordinates_yxhw[str(mark_id)]],
som_generator,
edgecolor=(255,127,111),
alpha=30,
fn_save=None,
normalized_to_pixel=False,
add_mark=False
)
else:
try:
if 'box' in magma_response:
pred_bbox = extract_bbox(magma_response)
click_point = [(pred_bbox[0][0] + pred_bbox[1][0]) / 2, (pred_bbox[0][1] + pred_bbox[1][1]) / 2]
click_point = [item / 1000 for item in click_point]
else:
click_point = pred_2_point(magma_response)
# de-normalize click_point (width, height)
click_point = [click_point[0] * image_input.size[0], click_point[1] * image_input.size[1]]
image_som = plot_circles_with_marks(
image_input,
[click_point],
som_generator,
edgecolor=(255,127,111),
linewidth=3,
fn_save=None,
normalized_to_pixel=False,
add_mark=False
)
except:
image_som = image_input
return image_som, str(parsed_content_list)
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
image_input_component = gr.Image(
type='pil', label='Upload image')
# set the threshold for removing the bounding boxes with low confidence, default is 0.05
with gr.Accordion("Parameters", open=False) as parameter_row:
box_threshold_component = gr.Slider(
label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05)
# set the threshold for removing the bounding boxes with large overlap, default is 0.1
iou_threshold_component = gr.Slider(
label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1)
use_paddleocr_component = gr.Checkbox(
label='Use PaddleOCR', value=True)
imgsz_component = gr.Slider(
label='Icon Detect Image Size', minimum=640, maximum=1920, step=32, value=640)
# text box
text_input_component = gr.Textbox(label='Text Input', placeholder='Text Input')
submit_button_component = gr.Button(
value='Submit', variant='primary')
with gr.Column():
image_output_component = gr.Image(type='pil', label='Image Output')
text_output_component = gr.Textbox(label='Parsed screen elements', placeholder='Text Output')
submit_button_component.click(
fn=process,
inputs=[
image_input_component,
box_threshold_component,
iou_threshold_component,
use_paddleocr_component,
imgsz_component,
text_input_component
],
outputs=[image_output_component, text_output_component]
)
# demo.launch(debug=False, show_error=True, share=True)
# demo.launch(share=True, server_port=7861, server_name='0.0.0.0')
demo.queue().launch(share=False)