File size: 10,356 Bytes
3cad23b
 
 
 
 
 
19bcd88
3cad23b
19bcd88
 
3cad23b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9d2369
3cad23b
 
c9d2369
 
 
 
 
 
 
 
 
3cad23b
 
 
 
 
 
 
c9d2369
3cad23b
 
 
 
 
 
c9d2369
 
3cad23b
 
 
 
 
 
 
 
 
c9d2369
 
3cad23b
 
 
 
 
 
 
 
 
e5465b9
 
3cad23b
 
 
 
 
 
 
 
 
 
c9d2369
3cad23b
 
 
c9d2369
 
 
3cad23b
 
 
 
 
 
c9d2369
3cad23b
 
c9d2369
 
3cad23b
 
c9d2369
3cad23b
 
 
 
 
 
c9d2369
3cad23b
 
 
 
c9d2369
 
 
 
 
 
 
 
3cad23b
c9d2369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cad23b
c9d2369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cad23b
c9d2369
3cad23b
c9d2369
 
3cad23b
c9d2369
3cad23b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import json

import gradio as gr

from flow import full_flow

from utils import use_cost_tracker, get_costs, compute_hash

with open('schemas.json', 'r') as f:
    SCHEMAS = json.load(f)

def parse_raw_messages(messages_raw):
    messages_clean = []
    messages_agora = []

    for message in messages_raw:
        role = message['role']
        message_without_role = dict(message)
        del message_without_role['role']

        messages_agora.append({
            'role': role,
            'content': '```\n' + json.dumps(message_without_role, indent=2) + '\n```'
        })

        if message.get('status') == 'error':
            messages_clean.append({
                'role': role,
                'content': f"Error: {message['message']}"
            })
        else:
            messages_clean.append({
                'role': role,
                'content': message['body']
            })

    return messages_clean, messages_agora

def main():
    with gr.Blocks() as demo:
        gr.Markdown("# Agora Demo")
        gr.Markdown("We will create a new Agora channel and offer it to Alice as a tool.")

        chosen_task = gr.Dropdown(choices=[
            (v['display_name'], k) for k, v in SCHEMAS.items()
        ], label="Schema", value="weather_forecast")

        @gr.render(inputs=[chosen_task])
        def render2(chosen_task):
            gr.Markdown('**Description**: ' + SCHEMAS[chosen_task]["description"])

        custom_task = gr.Checkbox(label="Override Demo Parameters")

        STATE_TRACKER = {}
        
        @gr.render(inputs=[chosen_task, custom_task])
        def render(chosen_task, custom_task):
            if STATE_TRACKER.get('chosen_task') != chosen_task:
                STATE_TRACKER['chosen_task'] = chosen_task
                for k, v in SCHEMAS[chosen_task]['schema'].items():
                    if isinstance(v, str):
                        STATE_TRACKER[k] = v
                    else:
                        STATE_TRACKER[k] = json.dumps(v, indent=2)

            if custom_task:
                gr.Markdown('#### Custom Demo Parameters')
                gr.Markdown('You can override the default parameters for the demo. Note: recommended for advanced users only.')
                gr.Text(label="Description", value=STATE_TRACKER["description"], interactive=True).change(lambda x: STATE_TRACKER.update({'description': x}))
                gr.TextArea(label="Input Schema", value=STATE_TRACKER["input"], interactive=True).change(lambda x: STATE_TRACKER.update({'input': x}))
                gr.TextArea(label="Output Schema", value=STATE_TRACKER["output"], interactive=True).change(lambda x: STATE_TRACKER.update({'output': x}))
                gr.TextArea(label="Tools", value=STATE_TRACKER["tools"], interactive=True).change(lambda x: STATE_TRACKER.update({'tools': x}))
                gr.TextArea(label="Examples", value=STATE_TRACKER["examples"], interactive=True).change(lambda x: STATE_TRACKER.update({'examples': x}))

        model_options = [
            ('GPT 4o (Camel AI)', 'gpt-4o'),
            ('GPT 4o-mini (Camel AI)', 'gpt-4o-mini'),
            ('Claude 3 Sonnet (LangChain)', 'claude-3-5-sonnet-latest'),
            ('Claude 3 Haiku (LangChain)', 'claude-3-5-haiku-latest'),
            ('Gemini 1.5 Pro (Google GenAI)', 'gemini-1.5-pro'),
            ('Llama3 405B (Sambanova + LangChain)', 'llama3-405b')
        ]

        fallback_image = ''

        images = {
            'gpt-4o': 'https://uxwing.com/wp-content/themes/uxwing/download/brands-and-social-media/chatgpt-icon.png',
            'gpt-4o-mini': 'https://uxwing.com/wp-content/themes/uxwing/download/brands-and-social-media/chatgpt-icon.png',
            'claude-3-5-sonnet-latest': 'https://play-lh.googleusercontent.com/4S1nfdKsH_1tJodkHrBHimqlCTE6qx6z22zpMyPaMc_Rlr1EdSFDI1I6UEVMnokG5zI',
            'claude-3-5-haiku-latest': 'https://play-lh.googleusercontent.com/4S1nfdKsH_1tJodkHrBHimqlCTE6qx6z22zpMyPaMc_Rlr1EdSFDI1I6UEVMnokG5zI',
            'gemini-1.5-pro': 'https://uxwing.com/wp-content/themes/uxwing/download/brands-and-social-media/google-gemini-icon.png',
            'llama3-405b': 'https://www.designstub.com/png-resources/wp-content/uploads/2023/03/meta-icon-social-media-flat-graphic-vector-3-novem.png'
        }

        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                alice_model_dd = gr.Dropdown(label="Alice Model", choices=model_options, value="gpt-4o")
            with gr.Column(scale=1):
                bob_model_dd = gr.Dropdown(label="Bob Model", choices=model_options, value="gpt-4o")
        
        

        @gr.render(inputs=[alice_model_dd, bob_model_dd])
        def render_with_images(alice_model, bob_model):
            button = gr.Button('Start', elem_id='start_button')
            gr.Markdown('## Natural Language')

            avatar_images = [images.get(alice_model, fallback_image), images.get(bob_model, fallback_image)]
            chatbot_nl = gr.Chatbot(type="messages", avatar_images=avatar_images)

            with gr.Accordion(label="Raw Messages", open=False):
                chatbot_nl_raw = gr.Chatbot(type="messages", avatar_images=avatar_images)
        
            gr.Markdown('## Negotiation')
            chatbot_negotiation = gr.Chatbot(type="messages", avatar_images=avatar_images)

            gr.Markdown('## Protocol')
            protocol_hash_result = gr.Text(interactive=False, label="Protocol Hash")
            protocol_result = gr.TextArea(interactive=False, label="Protocol")

            gr.Markdown('## Implementation')
            with gr.Row():
                with gr.Column(scale=1):
                    alice_implementation = gr.TextArea(interactive=False, label="Alice Implementation")
                with gr.Column(scale=1):
                    bob_implementation = gr.TextArea(interactive=False, label="Bob Implementation")

            gr.Markdown('## Structured Communication')
            structured_communication = gr.Chatbot(type="messages", avatar_images=avatar_images)
            
            with gr.Accordion(label="Raw Messages", open=False):
                structured_communication_raw = gr.Chatbot(type="messages", avatar_images=avatar_images)
            
            gr.Markdown('## Cost')
            cost_info = gr.State(value=None)
            #cost_info = gr.TextArea(interactive=False, label="Cost")

            query_slider = gr.Slider(label="Number of queries", minimum=1, maximum=10_000, step=1, value=50, interactive=True)
            cost_display = gr.Markdown('')
            

            def render_info(query_count, cost_info):
                if not cost_info:
                    return ''
                natural_cost = cost_info['conversation'] * query_count
                agora_cost = cost_info['negotiation'] + cost_info['programming']

                cost_message = f'Cost of one natural language conversation: {cost_info["conversation"]:.4f} USD\n\n'
                cost_message += f'Cost of negotiating the protocol: {cost_info["negotiation"]:.4f} USD\n\n'
                cost_message += f'Cost of implementing the protocol: {cost_info["programming"]:.4f} USD\n\n'
                cost_message += f'Cost of {query_count} queries with natural language: {natural_cost:.4f} USD\n\n'
                cost_message += f'Cost of {query_count} queries with Agora: {agora_cost:.4f} USD\n\n'

                if natural_cost < agora_cost:
                    factor = agora_cost / natural_cost
                    cost_message += f'Natural language is {factor:.2f}x cheaper than Agora.'
                else:
                    factor = natural_cost / agora_cost
                    cost_message += f'Agora is {factor:.2f}x cheaper than natural language.'

                return cost_message

            cost_info.change(render_info, [query_slider, cost_info], [cost_display])
            query_slider.change(render_info, [query_slider, cost_info], [cost_display])


            def respond(chosen_task, custom_task, alice_model, bob_model, query_count):
                with use_cost_tracker():
                    yield gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False), \
                        None, None, None, None, None, None, None, None, None, None, None

                    if custom_task:
                        schema = dict(STATE_TRACKER)
                        for k, v in schema.items():
                            if isinstance(v, str):
                                try:
                                    schema[k] = json.loads(v)
                                except:
                                    pass
                    else:
                        schema = SCHEMAS[chosen_task]["schema"]

                    for nl_messages_raw, negotiation_messages, structured_messages_raw, protocol, alice_implementation, bob_implementation in full_flow(schema, alice_model, bob_model):
                        nl_messages_clean, nl_messages_agora = parse_raw_messages(nl_messages_raw)
                        structured_messages_clean, structured_messages_agora = parse_raw_messages(structured_messages_raw)
                        protocol_hash = compute_hash(protocol) if protocol else None
                        yield gr.update(), gr.update(), gr.update(), None, None, nl_messages_clean, nl_messages_agora, negotiation_messages, structured_messages_clean, structured_messages_agora, protocol, protocol_hash, alice_implementation, bob_implementation

                    #yield from full_flow(schema, alice_model, bob_model)

                    cost_data = get_costs()
                    cost_data_formatted = render_info(query_count, cost_data)

                    yield gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), cost_data, cost_data_formatted, gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()

            button.click(respond, [chosen_task, custom_task, alice_model_dd, bob_model_dd], [button, alice_model_dd, bob_model_dd, chatbot_nl, chatbot_nl_raw, chatbot_negotiation, structured_communication, structured_communication_raw, protocol_result, alice_implementation, bob_implementation])

    demo.launch()


if __name__ == '__main__':
    main()