Spaces:
Running
Running
File size: 7,610 Bytes
3cad23b 19bcd88 3cad23b 19bcd88 3cad23b e5465b9 3cad23b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import json
import gradio as gr
from collections import UserList
from flow import full_flow
from utils import use_cost_tracker, get_costs, compute_hash
with open('schemas.json', 'r') as f:
SCHEMAS = json.load(f)
def parse_raw_messages(messages_raw):
messages_clean = []
messages_agora = []
for message in messages_raw:
role = message['role']
message_without_role = dict(message)
del message_without_role['role']
messages_agora.append({
'role': role,
'content': '```\n' + json.dumps(message_without_role, indent=2) + '\n```'
})
if message.get('status') == 'error':
messages_clean.append({
'role': role,
'content': f"Error: {message['message']}"
})
else:
messages_clean.append({
'role': role,
'content': message['body']
})
return messages_clean, messages_agora
def main():
with gr.Blocks() as demo:
gr.Markdown("### Agora Demo")
gr.Markdown("We will create a new Agora channel and offer it to Alice as a tool.")
chosen_task = gr.Dropdown(choices=list(SCHEMAS.keys()), label="Schema", value="weather_forecast")
custom_task = gr.Checkbox(label="Custom Task")
STATE_TRACKER = {}
@gr.render(inputs=[chosen_task, custom_task])
def render(chosen_task, custom_task):
if STATE_TRACKER.get('chosen_task') != chosen_task:
STATE_TRACKER['chosen_task'] = chosen_task
for k, v in SCHEMAS[chosen_task].items():
if isinstance(v, str):
STATE_TRACKER[k] = v
else:
STATE_TRACKER[k] = json.dumps(v, indent=2)
if custom_task:
gr.Text(label="Description", value=STATE_TRACKER["description"], interactive=True).change(lambda x: STATE_TRACKER.update({'description': x}))
gr.TextArea(label="Input Schema", value=STATE_TRACKER["input"], interactive=True).change(lambda x: STATE_TRACKER.update({'input': x}))
gr.TextArea(label="Output Schema", value=STATE_TRACKER["output"], interactive=True).change(lambda x: STATE_TRACKER.update({'output': x}))
gr.TextArea(label="Tools", value=STATE_TRACKER["tools"], interactive=True).change(lambda x: STATE_TRACKER.update({'tools': x}))
gr.TextArea(label="Examples", value=STATE_TRACKER["examples"], interactive=True).change(lambda x: STATE_TRACKER.update({'examples': x}))
model_options = [
('GPT 4o (Camel AI)', 'gpt-4o'),
('GPT 4o-mini (Camel AI)', 'gpt-4o-mini'),
('Claude 3 Sonnet (LangChain)', 'claude-3-sonnet'),
('Gemini 1.5 Pro (Google GenAI)', 'gemini-1.5-pro'),
('Llama3 405B (Sambanova + LangChain)', 'llama3-405b')
]
fallback_image = ''
images = {
'gpt-4o': 'https://uxwing.com/wp-content/themes/uxwing/download/brands-and-social-media/chatgpt-icon.png',
'gpt-4o-mini': 'https://uxwing.com/wp-content/themes/uxwing/download/brands-and-social-media/chatgpt-icon.png',
'claude-3-5-sonnet-latest': 'https://play-lh.googleusercontent.com/4S1nfdKsH_1tJodkHrBHimqlCTE6qx6z22zpMyPaMc_Rlr1EdSFDI1I6UEVMnokG5zI',
'claude-3-5-haiku-latest': 'https://play-lh.googleusercontent.com/4S1nfdKsH_1tJodkHrBHimqlCTE6qx6z22zpMyPaMc_Rlr1EdSFDI1I6UEVMnokG5zI',
'gemini-1.5-pro': 'https://uxwing.com/wp-content/themes/uxwing/download/brands-and-social-media/google-gemini-icon.png',
'llama3-405b': 'https://www.designstub.com/png-resources/wp-content/uploads/2023/03/meta-icon-social-media-flat-graphic-vector-3-novem.png'
}
with gr.Row(equal_height=True):
with gr.Column(scale=1):
alice_model_dd = gr.Dropdown(label="Alice Model", choices=model_options, value="gpt-4o")
with gr.Column(scale=1):
bob_model_dd = gr.Dropdown(label="Bob Model", choices=model_options, value="gpt-4o")
button = gr.Button('Start', elem_id='start_button')
gr.Markdown('### Natural Language')
@gr.render(inputs=[alice_model_dd, bob_model_dd])
def render_with_images(alice_model, bob_model):
avatar_images = [images.get(alice_model, fallback_image), images.get(bob_model, fallback_image)]
chatbot_nl = gr.Chatbot(type="messages", avatar_images=avatar_images)
with gr.Accordion(label="Raw Messages", open=False):
chatbot_nl_raw = gr.Chatbot(type="messages", avatar_images=avatar_images)
gr.Markdown('### Negotiation')
chatbot_negotiation = gr.Chatbot(type="messages", avatar_images=avatar_images)
gr.Markdown('### Protocol')
protocol_result = gr.TextArea(interactive=False, label="Protocol")
gr.Markdown('### Implementation')
with gr.Row():
with gr.Column(scale=1):
alice_implementation = gr.TextArea(interactive=False, label="Alice Implementation")
with gr.Column(scale=1):
bob_implementation = gr.TextArea(interactive=False, label="Bob Implementation")
gr.Markdown('### Structured Communication')
structured_communication = gr.Chatbot(type="messages", avatar_images=avatar_images)
with gr.Accordion(label="Raw Messages", open=False):
structured_communication_raw = gr.Chatbot(type="messages", avatar_images=avatar_images)
def respond(chosen_task, custom_task, alice_model, bob_model):
yield gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False), \
None, None, None, None, None, None, None, None
if custom_task:
schema = dict(STATE_TRACKER)
for k, v in schema.items():
if isinstance(v, str):
try:
schema[k] = json.loads(v)
except:
pass
else:
schema = SCHEMAS[chosen_task]
for nl_messages_raw, negotiation_messages, structured_messages_raw, protocol, alice_implementation, bob_implementation in full_flow(schema, alice_model, bob_model):
nl_messages_clean, nl_messages_agora = parse_raw_messages(nl_messages_raw)
structured_messages_clean, structured_messages_agora = parse_raw_messages(structured_messages_raw)
yield gr.update(), gr.update(), gr.update(), nl_messages_clean, nl_messages_agora, negotiation_messages, structured_messages_clean, structured_messages_agora, protocol, alice_implementation, bob_implementation
#yield from full_flow(schema, alice_model, bob_model)
yield gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
button.click(respond, [chosen_task, custom_task, alice_model_dd, bob_model_dd], [button, alice_model_dd, bob_model_dd, chatbot_nl, chatbot_nl_raw, chatbot_negotiation, structured_communication, structured_communication_raw, protocol_result, alice_implementation, bob_implementation])
demo.launch()
if __name__ == '__main__':
main()
|