Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
+
import torch
|
3 |
+
from peft import PeftModel
|
4 |
+
import gradio as gr
|
5 |
+
from huggingface_hub import login
|
6 |
+
|
7 |
+
# Log in with the secret token (stored in Hugging Face Secrets)
|
8 |
+
login(token="${HF_TOKEN}")
|
9 |
+
|
10 |
+
# Define model paths
|
11 |
+
base_model_name = "meta-llama/Llama-3.2-3B-Instruct"
|
12 |
+
lora_adapter_path = "agilan1102/eysflow_adapters"
|
13 |
+
|
14 |
+
# Load tokenizer and models
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name, use_auth_token=True)
|
16 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
17 |
+
base_model_name,
|
18 |
+
device_map="auto",
|
19 |
+
use_auth_token=True
|
20 |
+
)
|
21 |
+
model_with_adapter = PeftModel.from_pretrained(base_model, lora_adapter_path, use_auth_token=True)
|
22 |
+
|
23 |
+
def generate_text_adapter(prompt):
|
24 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model_with_adapter.device)
|
25 |
+
outputs = model_with_adapter.generate(**inputs, max_new_tokens=500)
|
26 |
+
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
27 |
+
return result
|
28 |
+
|
29 |
+
# Create Gradio interface
|
30 |
+
demo = gr.Interface(
|
31 |
+
fn=generate_text_adapter,
|
32 |
+
inputs="text",
|
33 |
+
outputs="text",
|
34 |
+
title="My Finetuned LLM API"
|
35 |
+
)
|
36 |
+
|
37 |
+
# Launch the interface
|
38 |
+
demo.launch()
|