Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import pyarrow as pa | |
import pyarrow.parquet as pq | |
import json | |
import tempfile | |
# current schema (refer to https://huggingface.co/spaces/phxia/dataset-builder/blob/main/dataset_uploader.py#L153 for more info) | |
schema = { | |
"username": {"_type": "Value", "dtype": "string"}, | |
"unit1": {"_type": "Value", "dtype": "float64"}, | |
"unit2": {"_type": "Value", "dtype": "float64"}, | |
"unit3": {"_type": "Value", "dtype": "float64"}, | |
"unit4": {"_type": "Value", "dtype": "float64"}, | |
"certified": {"_type": "Value", "dtype": "int64"}, | |
} | |
def to_parquet( | |
api, | |
repo: str, | |
username: str = "", | |
unit1: float = 0.0, | |
unit2: float = 0.0, | |
unit3: float = 0.0, | |
unit4: float = 0.0, | |
certified: int = 0, | |
): | |
data = { | |
"username": username, | |
"unit1": unit1 * 100 if unit1 != 0 else 0.0, | |
"unit2": unit2 * 100 if unit2 != 0 else 0.0, | |
"unit3": unit3 * 100 if unit3 != 0 else 0.0, | |
"unit4": unit4 * 100 if unit4 != 0 else 0.0, | |
"certified": certified, | |
} | |
# Export data to Arrow format | |
table = pa.Table.from_pylist([data]) | |
# Add metadata (used by datasets library) | |
table = table.replace_schema_metadata( | |
{"huggingface": json.dumps({"info": {"features": schema}})} | |
) | |
# Write to parquet file | |
archive_file = tempfile.NamedTemporaryFile(delete=False) | |
pq.write_table(table, archive_file.name) | |
archive_file.close() | |
api.upload_file( | |
repo_id=repo, # manually created repo | |
repo_type="dataset", | |
path_in_repo=f"{username}.parquet", # each user will have their own parquet | |
path_or_fileobj=archive_file.name, | |
) | |