Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,10 @@ tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
|
8 |
model = AutoModelForCausalLM.from_pretrained("gpt2")
|
9 |
|
10 |
print("Loading finished.")
|
|
|
|
|
|
|
|
|
11 |
|
12 |
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
13 |
# True
|
@@ -436,9 +440,6 @@ def get_beam_search_html(
|
|
436 |
do_sample=False,
|
437 |
)
|
438 |
markdown = "The conclusive sequences are the ones that end in an `<|endoftext|>` token or at the end of generation."
|
439 |
-
markdown += "\n\nThey are ranked by their scores, as given by the formula `score = cumulative_score / (output_length ** length_penalty)`.\n\n"
|
440 |
-
markdown += "Only the top `num_beams` scoring sequences are returned: in the tree they are highlighted in **<span style='color:var(--secondary-500)!important'>blue</span>**."
|
441 |
-
markdown += " The non-selected sequences are also shown in the tree, highlighted in **<span style='color:var(--primary-500)!important'>yellow</span>**."
|
442 |
markdown += "\n#### <span style='color:var(--secondary-500)!important'>Output sequences:</span>"
|
443 |
# Sequences are padded anyway so you can batch decode them
|
444 |
decoded_sequences = tokenizer.batch_decode(outputs.sequences)
|
@@ -484,16 +485,13 @@ with gr.Blocks(
|
|
484 |
value="Hugging Face is",
|
485 |
)
|
486 |
|
487 |
-
|
488 |
-
n_beams=1
|
489 |
-
length_penalty=1
|
490 |
-
num_return_sequences=3
|
491 |
button = gr.Button()
|
492 |
out_html = gr.Markdown()
|
493 |
out_markdown = gr.Markdown()
|
494 |
button.click(
|
495 |
get_beam_search_html,
|
496 |
-
inputs=[text
|
497 |
outputs=[out_html, out_markdown],
|
498 |
)
|
499 |
|
|
|
8 |
model = AutoModelForCausalLM.from_pretrained("gpt2")
|
9 |
|
10 |
print("Loading finished.")
|
11 |
+
n_steps=12
|
12 |
+
n_beams=1
|
13 |
+
length_penalty=1
|
14 |
+
num_return_sequences=3
|
15 |
|
16 |
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
17 |
# True
|
|
|
440 |
do_sample=False,
|
441 |
)
|
442 |
markdown = "The conclusive sequences are the ones that end in an `<|endoftext|>` token or at the end of generation."
|
|
|
|
|
|
|
443 |
markdown += "\n#### <span style='color:var(--secondary-500)!important'>Output sequences:</span>"
|
444 |
# Sequences are padded anyway so you can batch decode them
|
445 |
decoded_sequences = tokenizer.batch_decode(outputs.sequences)
|
|
|
485 |
value="Hugging Face is",
|
486 |
)
|
487 |
|
488 |
+
|
|
|
|
|
|
|
489 |
button = gr.Button()
|
490 |
out_html = gr.Markdown()
|
491 |
out_markdown = gr.Markdown()
|
492 |
button.click(
|
493 |
get_beam_search_html,
|
494 |
+
inputs=[text],
|
495 |
outputs=[out_html, out_markdown],
|
496 |
)
|
497 |
|