|
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool |
|
import datetime |
|
import requests |
|
import pytz |
|
import yaml |
|
from tools.final_answer import FinalAnswerTool |
|
|
|
from Gradio_UI import GradioUI |
|
import requests |
|
import pandas as pd |
|
from datetime import datetime, timedelta |
|
|
|
|
|
@tool |
|
def my_custom_tool(arg1:str, arg2:int)-> str: |
|
|
|
"""A tool that does nothing yet |
|
Args: |
|
arg1: the first argument |
|
arg2: the second argument |
|
""" |
|
return "What magic will you build ?" |
|
|
|
@tool |
|
def get_current_time_in_timezone(timezone: str) -> str: |
|
"""A tool that fetches the current local time in a specified timezone. |
|
Args: |
|
timezone: A string representing a valid timezone (e.g., 'America/New_York'). |
|
""" |
|
try: |
|
|
|
tz = pytz.timezone(timezone) |
|
|
|
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") |
|
return f"The current local time in {timezone} is: {local_time}" |
|
except Exception as e: |
|
return f"Error fetching time for timezone '{timezone}': {str(e)}" |
|
|
|
@tool |
|
def predict_crypto_price_binance(crypto_symbol: str = "BTC", vs_currency: str = "USDT") -> str: |
|
""" |
|
Prédit l'évolution du prix d'une cryptomonnaie en se basant sur la SMA sur 9 et 20 jours et le RSI, |
|
en utilisant les données historiques issues de Binance. |
|
|
|
Args: |
|
crypto_symbol: Le symbole de la cryptomonnaie (ex: 'BTC'). |
|
vs_currency: La devise de cotation (ex: 'USDT'). Pour 'USD', Binance utilise généralement 'USDT'. |
|
|
|
Returns: |
|
Un message indiquant le signal d'achat, de vente ou une analyse basée sur le RSI. |
|
""" |
|
try: |
|
|
|
if vs_currency.lower() == "usd": |
|
vs_currency = "USDT" |
|
symbol = crypto_symbol.upper() + vs_currency.upper() |
|
|
|
|
|
url = "https://api.binance.com/api/v3/klines" |
|
params = { |
|
"symbol": symbol, |
|
"interval": "1d", |
|
"limit": 30 |
|
} |
|
response = requests.get(url, params=params, timeout=10) |
|
response.raise_for_status() |
|
data = response.json() |
|
|
|
|
|
|
|
|
|
|
|
rows = [] |
|
for kline in data: |
|
timestamp = kline[0] |
|
close_price = float(kline[4]) |
|
rows.append([timestamp, close_price]) |
|
|
|
df = pd.DataFrame(rows, columns=['timestamp', 'price']) |
|
df['date'] = pd.to_datetime(df['timestamp'], unit='ms') |
|
df.set_index('date', inplace=True) |
|
df.drop(columns=['timestamp'], inplace=True) |
|
|
|
|
|
df['SMA_9'] = df['price'].rolling(window=9).mean() |
|
df['SMA_20'] = df['price'].rolling(window=20).mean() |
|
|
|
|
|
delta = df['price'].diff() |
|
gain = delta.where(delta > 0, 0).rolling(window=14).mean() |
|
loss = -delta.where(delta < 0, 0).rolling(window=14).mean() |
|
rs = gain / loss |
|
df['RSI'] = 100 - (100 / (1 + rs)) |
|
|
|
|
|
if df['SMA_9'].iloc[-1] > df['SMA_20'].iloc[-1] and df['SMA_9'].iloc[-2] <= df['SMA_20'].iloc[-2]: |
|
return f"Signal d'achat : la SMA sur 9 jours a croisé au-dessus de la SMA sur 20 jours pour {symbol}." |
|
elif df['SMA_9'].iloc[-1] < df['SMA_20'].iloc[-1] and df['SMA_9'].iloc[-2] >= df['SMA_20'].iloc[-2]: |
|
return f"Signal de vente : la SMA sur 9 jours a croisé en dessous de la SMA sur 20 jours pour {symbol}." |
|
else: |
|
|
|
rsi_latest = df['RSI'].iloc[-1] |
|
if rsi_latest > 70: |
|
return f"Aucun croisement clair. Toutefois, le RSI est {rsi_latest:.2f}, indiquant des conditions de surachat (risque de correction)." |
|
elif rsi_latest < 30: |
|
return f"Aucun croisement clair. Toutefois, le RSI est {rsi_latest:.2f}, indiquant des conditions de survente (potentiel rebond)." |
|
else: |
|
return f"Aucun croisement clair. Le RSI est de {rsi_latest:.2f}, indiquant des conditions neutres." |
|
|
|
except Exception as e: |
|
return f"Une erreur s'est produite : {str(e)}" |
|
|
|
|
|
final_answer = FinalAnswerTool() |
|
|
|
|
|
|
|
|
|
model = HfApiModel( |
|
max_tokens=2096, |
|
temperature=0.5, |
|
model_id='Qwen/Qwen2.5-Coder-32B-Instruct', |
|
custom_role_conversions=None, |
|
) |
|
|
|
|
|
|
|
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) |
|
|
|
with open("prompts.yaml", 'r') as stream: |
|
prompt_templates = yaml.safe_load(stream) |
|
|
|
agent = CodeAgent( |
|
model=model, |
|
tools=[final_answer], |
|
max_steps=6, |
|
verbosity_level=1, |
|
grammar=None, |
|
planning_interval=None, |
|
name=None, |
|
description=None, |
|
prompt_templates=prompt_templates |
|
) |
|
|
|
|
|
GradioUI(agent).launch() |