File size: 1,772 Bytes
a068c58 9b5b26a c19d193 6aae614 9b5b26a a068c58 9b5b26a a068c58 9b5b26a a068c58 9b5b26a a068c58 8c01ffb a068c58 6aae614 ae7a494 a068c58 e121372 a068c58 13d500a 8c01ffb a068c58 9b5b26a 8c01ffb a068c58 861422e a068c58 8c01ffb 8fe992b a068c58 8c01ffb 861422e 8fe992b 8c01ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, load_tool, tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI
# Custom tool for constructing the search query
@tool
def construct_course_search_query(interest: str, expertise: str, budget: str) -> str:
"""Constructs a search query for finding AI courses based on user preferences.
Args:
interest: The area of interest within AI (e.g., 'machine learning', 'deep learning').
expertise: The user's current level of expertise (e.g., 'beginner', 'intermediate').
budget: The budget available for the course (e.g., '$100', 'free').
"""
query = f"best {interest} courses for {expertise} under {budget}"
return query
# Existing tools from the template
search_tool = DuckDuckGoSearchTool()
final_answer = FinalAnswerTool()
# Model configuration (unchanged from template)
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Llama', # Note: May need to switch if overloaded
custom_role_conversions=None,
)
# Import tool from Hub (unchanged from template)
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
# Load prompt templates (unchanged from template)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
# Initialize the agent with the updated tools list
agent = CodeAgent(
model=model,
tools=[construct_course_search_query, search_tool, final_answer], # Added custom tool
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch() |