File size: 5,780 Bytes
04bf3ab
 
 
 
 
 
 
3e7b7cc
 
04bf3ab
 
 
 
 
b4542eb
 
 
 
 
 
 
 
 
 
 
 
04bf3ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4542eb
04bf3ab
 
 
 
b4542eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import io
import requests
import numpy as np
import torch
from PIL import Image
from skimage.measure import block_reduce

import gradio as gr

from transformers import DetrFeatureExtractor, DetrForSegmentation, DetrConfig
from transformers.models.detr.feature_extraction_detr import rgb_to_id

from diffusers import StableDiffusionInpaintPipeline

# TODO: maybe need to port to `Blocks` system
# allegedly provides:
# Have multi-step interfaces, in which the output of one model becomes the 
# input to the next model, or have more flexible data flows in general.

# and:
# Change a component’s properties (for example, the choices in a dropdown) or its visibility based on user input
# https://huggingface.co/course/chapter9/7?fw=pt

torch.inference_mode()
torch.no_grad()

def load_segmentation_models(model_name: str = 'facebook/detr-resnet-50-panoptic'):
    feature_extractor = DetrFeatureExtractor.from_pretrained(model_name)
    model = DetrForSegmentation.from_pretrained(model_name)
    cfg = DetrConfig.from_pretrained(model_name)

    return feature_extractor, model, cfg

def load_diffusion_pipeline(model_name: str = 'runwayml/stable-diffusion-inpainting'):
    return StableDiffusionInpaintPipeline.from_pretrained(
        model_name,
        revision='fp16',
        torch_dtype=torch.float16
    )

def get_device(try_cuda=True):
    return torch.device('cuda' if try_cuda and torch.cuda.is_available() else 'cpu')

def min_pool(x: torch.Tensor, kernel_size: int):
    pad_size = (kernel_size - 1) // 2
    return -torch.nn.functional.max_pool2d(-x, kernel_size, (1, 1), padding=pad_size) 

def max_pool(x: torch.Tensor, kernel_size: int):
    pad_size = (kernel_size - 1) // 2
    return torch.nn.functional.max_pool2d(x, kernel_size, (1, 1), padding=pad_size) 

def clean_mask(mask, min_kernel: int = 5, max_kernel: int = 23):
    mask = torch.Tensor(mask[None, None]).float()
    mask = min_pool(mask, min_kernel)
    mask = max_pool(mask, max_kernel)
    mask = mask.bool().squeeze().numpy()
    return mask

device = get_device()

feature_extractor, segmentation_model, segmentation_cfg = load_segmentation_models()
# segmentation_model = segmentation_model.to(device)

pipe = load_diffusion_pipeline()
pipe = pipe.to(device)

# TODO: potentially use `gr.Gallery` to display different masks
def fn_segmentation_diffusion(prompt, mask_indices, image, max_kernel, min_kernel, num_diffusion_steps):
    mask_indices = [int(i) for i in mask_indices.split(',')]
    inputs = feature_extractor(images=image, return_tensors="pt")
    outputs = segmentation_model(**inputs)

    processed_sizes = torch.as_tensor(inputs["pixel_values"].shape[-2:]).unsqueeze(0)
    result = feature_extractor.post_process_panoptic(outputs, processed_sizes)[0]

    panoptic_seg = Image.open(io.BytesIO(result["png_string"])).resize((image.width, image.height))
    panoptic_seg = np.array(panoptic_seg, dtype=np.uint8)

    class_str = '\n'.join(segmentation_cfg.id2label[s['category_id']] for s in result['segments_info'])

    panoptic_seg_id = rgb_to_id(panoptic_seg)

    if len(mask_indices) > 0:
        mask = (panoptic_seg_id == mask_indices[0])
    for idx in mask_indices[1:]:
        mask = mask | (panoptic_seg_id == idx)
    mask = clean_mask(mask, min_kernel=min_kernel, max_kernel=max_kernel)

    masked_image = np.array(image).copy()
    masked_image[mask] = 0

    masked_image = Image.fromarray(masked_image).resize(image.size)
    mask = Image.fromarray(mask.astype(np.uint8) * 255).resize(image.size)

    if num_diffusion_steps == 0:
        return masked_image, masked_image, class_str

    STABLE_DIFFUSION_SMALL_EDGE = 512

    assert masked_image.size == mask.size
    w, h = masked_image.size
    is_width_larger = w > h
    resize_ratio = STABLE_DIFFUSION_SMALL_EDGE / (h if is_width_larger else w)

    new_width = int(w * resize_ratio) if is_width_larger else STABLE_DIFFUSION_SMALL_EDGE
    new_height = STABLE_DIFFUSION_SMALL_EDGE if is_width_larger else int(h * resize_ratio)

    new_width += 8 - (new_width % 8) if is_width_larger else 0
    new_height += 0 if is_width_larger else 8 - (new_height % 8)

    mask = mask.convert("RGB").resize((new_width, new_height))
    masked_image = masked_image.convert("RGB").resize((new_width, new_height))

    inpainted_image = pipe(
        height=new_height, 
        width=new_width, 
        prompt=prompt,
        image=masked_image, 
        mask_image=mask,
        num_inference_steps=num_diffusion_steps
    ).images[0]

    return masked_image, inpainted_image, class_str


# iface_segmentation = gr.Interface(
    # fn=fn_segmentation, 
    # inputs=[
        # "text", 
        # "text", 
        # gr.Image(value="http://images.cocodataset.org/val2017/000000039769.jpg"),
        # gr.Slider(minimum=1, maximum=99, value=23, step=2),
        # gr.Slider(minimum=1, maximum=99, value=5, step=2),
        # gr.Slider(minimum=0, maximum=100, value=50, step=1),
    # ], 
    # outputs=["text", gr.Image(type="pil"), gr.Image(type="pil"), "number", "text"]
# )

# iface_diffusion = gr.Interface(
    # fn=fn_diffusion,
    # inputs=["text", gr.Image(type='pil'), gr.Image(type='pil'), "number", "text"],
    # outputs=[gr.Image(), gr.Image(), gr.Textbox()]
# )

# iface = gr.Series(
    # iface_segmentation, iface_diffusion,
iface = gr.Interface(
    fn=fn_segmentation_diffusion,
    inputs=[
        "text",
        "text", 
        gr.Image(value="http://images.cocodataset.org/val2017/000000039769.jpg", type='pil'),
        gr.Slider(minimum=1, maximum=99, value=23, step=2),
        gr.Slider(minimum=1, maximum=99, value=5, step=2),
        gr.Slider(minimum=0, maximum=100, value=50, step=1),
    ], 
    outputs=[gr.Image(), gr.Image(), gr.Textbox(interactive=False)]
)

iface.launch()