Spaces:
Runtime error
Runtime error
File size: 5,780 Bytes
04bf3ab 3e7b7cc 04bf3ab b4542eb 04bf3ab b4542eb 04bf3ab b4542eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import io
import requests
import numpy as np
import torch
from PIL import Image
from skimage.measure import block_reduce
import gradio as gr
from transformers import DetrFeatureExtractor, DetrForSegmentation, DetrConfig
from transformers.models.detr.feature_extraction_detr import rgb_to_id
from diffusers import StableDiffusionInpaintPipeline
# TODO: maybe need to port to `Blocks` system
# allegedly provides:
# Have multi-step interfaces, in which the output of one model becomes the
# input to the next model, or have more flexible data flows in general.
# and:
# Change a component’s properties (for example, the choices in a dropdown) or its visibility based on user input
# https://huggingface.co/course/chapter9/7?fw=pt
torch.inference_mode()
torch.no_grad()
def load_segmentation_models(model_name: str = 'facebook/detr-resnet-50-panoptic'):
feature_extractor = DetrFeatureExtractor.from_pretrained(model_name)
model = DetrForSegmentation.from_pretrained(model_name)
cfg = DetrConfig.from_pretrained(model_name)
return feature_extractor, model, cfg
def load_diffusion_pipeline(model_name: str = 'runwayml/stable-diffusion-inpainting'):
return StableDiffusionInpaintPipeline.from_pretrained(
model_name,
revision='fp16',
torch_dtype=torch.float16
)
def get_device(try_cuda=True):
return torch.device('cuda' if try_cuda and torch.cuda.is_available() else 'cpu')
def min_pool(x: torch.Tensor, kernel_size: int):
pad_size = (kernel_size - 1) // 2
return -torch.nn.functional.max_pool2d(-x, kernel_size, (1, 1), padding=pad_size)
def max_pool(x: torch.Tensor, kernel_size: int):
pad_size = (kernel_size - 1) // 2
return torch.nn.functional.max_pool2d(x, kernel_size, (1, 1), padding=pad_size)
def clean_mask(mask, min_kernel: int = 5, max_kernel: int = 23):
mask = torch.Tensor(mask[None, None]).float()
mask = min_pool(mask, min_kernel)
mask = max_pool(mask, max_kernel)
mask = mask.bool().squeeze().numpy()
return mask
device = get_device()
feature_extractor, segmentation_model, segmentation_cfg = load_segmentation_models()
# segmentation_model = segmentation_model.to(device)
pipe = load_diffusion_pipeline()
pipe = pipe.to(device)
# TODO: potentially use `gr.Gallery` to display different masks
def fn_segmentation_diffusion(prompt, mask_indices, image, max_kernel, min_kernel, num_diffusion_steps):
mask_indices = [int(i) for i in mask_indices.split(',')]
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = segmentation_model(**inputs)
processed_sizes = torch.as_tensor(inputs["pixel_values"].shape[-2:]).unsqueeze(0)
result = feature_extractor.post_process_panoptic(outputs, processed_sizes)[0]
panoptic_seg = Image.open(io.BytesIO(result["png_string"])).resize((image.width, image.height))
panoptic_seg = np.array(panoptic_seg, dtype=np.uint8)
class_str = '\n'.join(segmentation_cfg.id2label[s['category_id']] for s in result['segments_info'])
panoptic_seg_id = rgb_to_id(panoptic_seg)
if len(mask_indices) > 0:
mask = (panoptic_seg_id == mask_indices[0])
for idx in mask_indices[1:]:
mask = mask | (panoptic_seg_id == idx)
mask = clean_mask(mask, min_kernel=min_kernel, max_kernel=max_kernel)
masked_image = np.array(image).copy()
masked_image[mask] = 0
masked_image = Image.fromarray(masked_image).resize(image.size)
mask = Image.fromarray(mask.astype(np.uint8) * 255).resize(image.size)
if num_diffusion_steps == 0:
return masked_image, masked_image, class_str
STABLE_DIFFUSION_SMALL_EDGE = 512
assert masked_image.size == mask.size
w, h = masked_image.size
is_width_larger = w > h
resize_ratio = STABLE_DIFFUSION_SMALL_EDGE / (h if is_width_larger else w)
new_width = int(w * resize_ratio) if is_width_larger else STABLE_DIFFUSION_SMALL_EDGE
new_height = STABLE_DIFFUSION_SMALL_EDGE if is_width_larger else int(h * resize_ratio)
new_width += 8 - (new_width % 8) if is_width_larger else 0
new_height += 0 if is_width_larger else 8 - (new_height % 8)
mask = mask.convert("RGB").resize((new_width, new_height))
masked_image = masked_image.convert("RGB").resize((new_width, new_height))
inpainted_image = pipe(
height=new_height,
width=new_width,
prompt=prompt,
image=masked_image,
mask_image=mask,
num_inference_steps=num_diffusion_steps
).images[0]
return masked_image, inpainted_image, class_str
# iface_segmentation = gr.Interface(
# fn=fn_segmentation,
# inputs=[
# "text",
# "text",
# gr.Image(value="http://images.cocodataset.org/val2017/000000039769.jpg"),
# gr.Slider(minimum=1, maximum=99, value=23, step=2),
# gr.Slider(minimum=1, maximum=99, value=5, step=2),
# gr.Slider(minimum=0, maximum=100, value=50, step=1),
# ],
# outputs=["text", gr.Image(type="pil"), gr.Image(type="pil"), "number", "text"]
# )
# iface_diffusion = gr.Interface(
# fn=fn_diffusion,
# inputs=["text", gr.Image(type='pil'), gr.Image(type='pil'), "number", "text"],
# outputs=[gr.Image(), gr.Image(), gr.Textbox()]
# )
# iface = gr.Series(
# iface_segmentation, iface_diffusion,
iface = gr.Interface(
fn=fn_segmentation_diffusion,
inputs=[
"text",
"text",
gr.Image(value="http://images.cocodataset.org/val2017/000000039769.jpg", type='pil'),
gr.Slider(minimum=1, maximum=99, value=23, step=2),
gr.Slider(minimum=1, maximum=99, value=5, step=2),
gr.Slider(minimum=0, maximum=100, value=50, step=1),
],
outputs=[gr.Image(), gr.Image(), gr.Textbox(interactive=False)]
)
iface.launch()
|