Spaces:
Runtime error
Runtime error
File size: 7,284 Bytes
04bf3ab 8cd1abb 7d008e4 04bf3ab 3e7b7cc 04bf3ab b4542eb 04bf3ab 7d008e4 04bf3ab 557cf2f 7d008e4 557cf2f 7d008e4 557cf2f 7d008e4 8cd1abb 7d008e4 8cd1abb 7d008e4 557cf2f 8cd1abb 7d008e4 8cd1abb 557cf2f 7d008e4 8cd1abb 557cf2f 8cd1abb 7d008e4 8cd1abb 7d008e4 8cd1abb 7d008e4 8cd1abb 7d008e4 8cd1abb 7d008e4 8cd1abb 557cf2f 8cd1abb 557cf2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import io
import requests
import numpy as np
import torch
from PIL import Image
from skimage.measure import block_reduce
from typing import List, Optional
from functools import reduce
import gradio as gr
from transformers import DetrFeatureExtractor, DetrForSegmentation, DetrConfig
from transformers.models.detr.feature_extraction_detr import rgb_to_id
from diffusers import StableDiffusionInpaintPipeline
torch.inference_mode()
torch.no_grad()
def load_segmentation_models(model_name: str = 'facebook/detr-resnet-50-panoptic'):
feature_extractor = DetrFeatureExtractor.from_pretrained(model_name)
model = DetrForSegmentation.from_pretrained(model_name)
cfg = DetrConfig.from_pretrained(model_name)
return feature_extractor, model, cfg
def load_diffusion_pipeline(model_name: str = 'runwayml/stable-diffusion-inpainting'):
return StableDiffusionInpaintPipeline.from_pretrained(
model_name,
revision='fp16',
torch_dtype=torch.float16
)
def get_device(try_cuda=True):
return torch.device('cuda' if try_cuda and torch.cuda.is_available() else 'cpu')
def min_pool(x: torch.Tensor, kernel_size: int):
pad_size = (kernel_size - 1) // 2
return -torch.nn.functional.max_pool2d(-x, kernel_size, (1, 1), padding=pad_size)
def max_pool(x: torch.Tensor, kernel_size: int):
pad_size = (kernel_size - 1) // 2
return torch.nn.functional.max_pool2d(x, kernel_size, (1, 1), padding=pad_size)
def clean_mask(mask, max_kernel: int = 23, min_kernel: int = 5):
mask = torch.Tensor(mask[None, None]).float()
mask = min_pool(mask, min_kernel)
mask = max_pool(mask, max_kernel)
mask = mask.bool().squeeze().numpy()
return mask
device = get_device()
feature_extractor, segmentation_model, segmentation_cfg = load_segmentation_models()
pipe = load_diffusion_pipeline()
pipe = pipe.to(device)
def fn_segmentation(image, max_kernel, min_kernel):
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = segmentation_model(**inputs)
processed_sizes = torch.as_tensor(inputs["pixel_values"].shape[-2:]).unsqueeze(0)
result = feature_extractor.post_process_panoptic(outputs, processed_sizes)[0]
panoptic_seg = Image.open(io.BytesIO(result["png_string"])).resize((image.width, image.height))
panoptic_seg = np.array(panoptic_seg, dtype=np.uint8)
panoptic_seg_id = rgb_to_id(panoptic_seg)
raw_masks = []
for s in result['segments_info']:
m = panoptic_seg_id == s['id']
raw_masks.append(m.astype(np.uint8) * 255)
checkbox_choices = [f"{s['id']}:{segmentation_cfg.id2label[s['category_id']]}" for s in result['segments_info']]
checkbox_group = gr.CheckboxGroup.update(
choices=checkbox_choices
)
return raw_masks, checkbox_group, gr.Image.update(value=np.zeros((image.height, image.width))), gr.Image.update(value=image)
def fn_clean(masks, max_kernel, min_kernel):
out = []
for m in masks:
m = torch.FloatTensor(m)[None, None]
m = min_pool(m, min_kernel)
m = max_pool(m, max_kernel)
m = m.squeeze().numpy().astype(np.uint8)
out.append(m)
return out
def fn_update_mask(
image: Image,
masks: List[np.array],
masks_enabled: List[int],
max_kernel: int,
min_kernel: int,
):
masks_enabled = [int(m.split(':')[0]) for m in masks_enabled]
combined_mask = reduce(lambda x, y: x | y, [masks[i] for i in masks_enabled], np.zeros_like(masks[0], dtype=bool))
combined_mask = clean_mask(combined_mask, max_kernel, min_kernel)
masked_image = np.array(image).copy()
masked_image[combined_mask] = 0.0
return combined_mask.astype(np.uint8) * 255, Image.fromarray(masked_image)
def fn_diffusion(
prompt: str,
masked_image: Image,
mask: Image,
num_diffusion_steps: int,
guidance_scale: float,
negative_prompt: Optional[str] = None,
):
if len(negative_prompt) == 0:
negative_prompt = None
STABLE_DIFFUSION_SMALL_EDGE = 512
w, h = masked_image.size
is_width_larger = w > h
resize_ratio = STABLE_DIFFUSION_SMALL_EDGE / (h if is_width_larger else w)
new_width = int(w * resize_ratio) if is_width_larger else STABLE_DIFFUSION_SMALL_EDGE
new_height = STABLE_DIFFUSION_SMALL_EDGE if is_width_larger else int(h * resize_ratio)
new_width += 8 - (new_width % 8) if is_width_larger else 0
new_height += 0 if is_width_larger else 8 - (new_height % 8)
mask = Image.fromarray(mask).convert("RGB").resize((new_width, new_height))
masked_image = masked_image.convert("RGB").resize((new_width, new_height))
inpainted_image = pipe(
height=new_height,
width=new_width,
prompt=prompt,
image=masked_image,
mask_image=mask,
num_inference_steps=num_diffusion_steps,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt
).images[0]
inpainted_image = inpainted_image.resize((w, h))
return inpainted_image
demo = gr.Blocks()
with demo:
input_image = gr.Image(value="http://images.cocodataset.org/val2017/000000039769.jpg", type='pil', label="Input Image")
bt_masks = gr.Button("Compute Masks")
with gr.Row():
mask_image = gr.Image(type='numpy', label="Diffusion Mask")
masked_image = gr.Image(type='pil', label="Masked Image")
mask_storage = gr.State()
with gr.Row():
max_slider = gr.Slider(minimum=1, maximum=99, value=23, step=2, label="Mask Overflow")
min_slider = gr.Slider(minimum=1, maximum=99, value=5, step=2, label="Mask Denoising")
mask_checkboxes = gr.CheckboxGroup(interactive=True, label="Mask Selection")
with gr.Row():
with gr.Column():
prompt = gr.Textbox("Two ginger cats lying together on a pink sofa. There are two TV remotes. High definition.", label="Prompt")
negative_prompt = gr.Textbox(label="Negative Prompt")
with gr.Column():
steps_slider = gr.Slider(minimum=1, maximum=100, value=50, label="Inference Steps")
guidance_slider = gr.Slider(minimum=0.0, maximum=50.0, value=7.5, step=0.1, label="Guidance Scale")
bt_diffusion = gr.Button("Run Diffusion")
inpainted_image = gr.Image(type='pil', label="Inpainted Image")
update_mask_inputs = [input_image, mask_storage, mask_checkboxes, max_slider, min_slider]
update_mask_outputs = [mask_image, masked_image]
input_image.change(lambda: gr.CheckboxGroup.update(choices=[], value=[]), outputs=mask_checkboxes)
bt_masks.click(fn_segmentation, inputs=[input_image, max_slider, min_slider], outputs=[mask_storage, mask_checkboxes, mask_image, masked_image])
max_slider.change(fn_update_mask, inputs=update_mask_inputs, outputs=update_mask_outputs)
min_slider.change(fn_update_mask, inputs=update_mask_inputs, outputs=update_mask_outputs)
mask_checkboxes.change(fn_update_mask, inputs=update_mask_inputs, outputs=update_mask_outputs)
bt_diffusion.click(fn_diffusion, inputs=[
prompt,
masked_image,
mask_image,
steps_slider,
guidance_slider,
negative_prompt
], outputs=inpainted_image)
demo.launch()
|