File size: 7,284 Bytes
04bf3ab
 
 
 
 
 
8cd1abb
7d008e4
04bf3ab
3e7b7cc
 
04bf3ab
 
 
 
 
b4542eb
 
 
04bf3ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d008e4
04bf3ab
 
 
 
 
 
 
 
 
 
 
 
 
557cf2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d008e4
 
 
 
 
557cf2f
7d008e4
557cf2f
 
 
 
 
 
 
 
 
 
 
 
7d008e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cd1abb
 
 
 
 
 
 
 
 
 
7d008e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cd1abb
 
 
7d008e4
 
 
 
 
557cf2f
 
 
 
8cd1abb
7d008e4
 
 
 
8cd1abb
 
557cf2f
 
7d008e4
8cd1abb
 
557cf2f
8cd1abb
7d008e4
 
 
8cd1abb
 
 
 
 
7d008e4
 
8cd1abb
7d008e4
8cd1abb
 
7d008e4
8cd1abb
7d008e4
8cd1abb
557cf2f
8cd1abb
 
 
 
 
 
 
 
 
 
 
 
557cf2f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import io
import requests
import numpy as np
import torch
from PIL import Image
from skimage.measure import block_reduce
from typing import List, Optional
from functools import reduce

import gradio as gr

from transformers import DetrFeatureExtractor, DetrForSegmentation, DetrConfig
from transformers.models.detr.feature_extraction_detr import rgb_to_id

from diffusers import StableDiffusionInpaintPipeline

torch.inference_mode()
torch.no_grad()

def load_segmentation_models(model_name: str = 'facebook/detr-resnet-50-panoptic'):
    feature_extractor = DetrFeatureExtractor.from_pretrained(model_name)
    model = DetrForSegmentation.from_pretrained(model_name)
    cfg = DetrConfig.from_pretrained(model_name)

    return feature_extractor, model, cfg

def load_diffusion_pipeline(model_name: str = 'runwayml/stable-diffusion-inpainting'):
    return StableDiffusionInpaintPipeline.from_pretrained(
        model_name,
        revision='fp16',
        torch_dtype=torch.float16
    )

def get_device(try_cuda=True):
    return torch.device('cuda' if try_cuda and torch.cuda.is_available() else 'cpu')

def min_pool(x: torch.Tensor, kernel_size: int):
    pad_size = (kernel_size - 1) // 2
    return -torch.nn.functional.max_pool2d(-x, kernel_size, (1, 1), padding=pad_size) 

def max_pool(x: torch.Tensor, kernel_size: int):
    pad_size = (kernel_size - 1) // 2
    return torch.nn.functional.max_pool2d(x, kernel_size, (1, 1), padding=pad_size) 

def clean_mask(mask, max_kernel: int = 23, min_kernel: int = 5):
    mask = torch.Tensor(mask[None, None]).float()
    mask = min_pool(mask, min_kernel)
    mask = max_pool(mask, max_kernel)
    mask = mask.bool().squeeze().numpy()
    return mask

device = get_device()

feature_extractor, segmentation_model, segmentation_cfg = load_segmentation_models()

pipe = load_diffusion_pipeline()
pipe = pipe.to(device)

def fn_segmentation(image, max_kernel, min_kernel):
    inputs = feature_extractor(images=image, return_tensors="pt")
    outputs = segmentation_model(**inputs)

    processed_sizes = torch.as_tensor(inputs["pixel_values"].shape[-2:]).unsqueeze(0)
    result = feature_extractor.post_process_panoptic(outputs, processed_sizes)[0]

    panoptic_seg = Image.open(io.BytesIO(result["png_string"])).resize((image.width, image.height))
    panoptic_seg = np.array(panoptic_seg, dtype=np.uint8)

    panoptic_seg_id = rgb_to_id(panoptic_seg)

    raw_masks = []
    for s in result['segments_info']:
        m = panoptic_seg_id == s['id']
        raw_masks.append(m.astype(np.uint8) * 255)
    
    checkbox_choices = [f"{s['id']}:{segmentation_cfg.id2label[s['category_id']]}" for s in result['segments_info']]
    
    checkbox_group = gr.CheckboxGroup.update(
        choices=checkbox_choices
    )

    return raw_masks, checkbox_group, gr.Image.update(value=np.zeros((image.height, image.width))), gr.Image.update(value=image)

def fn_clean(masks, max_kernel, min_kernel):
    out = []
    for m in masks:
        m = torch.FloatTensor(m)[None, None]
        m = min_pool(m, min_kernel)
        m = max_pool(m, max_kernel)
        m = m.squeeze().numpy().astype(np.uint8)
        out.append(m)

    return out

def fn_update_mask(
        image: Image,
        masks: List[np.array], 
        masks_enabled: List[int], 
        max_kernel: int,
        min_kernel: int,
    ):
    masks_enabled = [int(m.split(':')[0]) for m in masks_enabled]
    combined_mask = reduce(lambda x, y: x | y, [masks[i] for i in masks_enabled], np.zeros_like(masks[0], dtype=bool))
    combined_mask = clean_mask(combined_mask, max_kernel, min_kernel)

    masked_image = np.array(image).copy()
    masked_image[combined_mask] = 0.0

    return combined_mask.astype(np.uint8) * 255, Image.fromarray(masked_image)

def fn_diffusion(
        prompt: str, 
        masked_image: Image, 
        mask: Image, 
        num_diffusion_steps: int,
        guidance_scale: float,
        negative_prompt: Optional[str] = None,
    ):
    if len(negative_prompt) == 0:
        negative_prompt = None
    STABLE_DIFFUSION_SMALL_EDGE = 512

    w, h = masked_image.size
    is_width_larger = w > h
    resize_ratio = STABLE_DIFFUSION_SMALL_EDGE / (h if is_width_larger else w)

    new_width = int(w * resize_ratio) if is_width_larger else STABLE_DIFFUSION_SMALL_EDGE
    new_height = STABLE_DIFFUSION_SMALL_EDGE if is_width_larger else int(h * resize_ratio)

    new_width += 8 - (new_width % 8) if is_width_larger else 0
    new_height += 0 if is_width_larger else 8 - (new_height % 8)

    mask = Image.fromarray(mask).convert("RGB").resize((new_width, new_height))
    masked_image = masked_image.convert("RGB").resize((new_width, new_height))

    inpainted_image = pipe(
        height=new_height, 
        width=new_width, 
        prompt=prompt,
        image=masked_image, 
        mask_image=mask,
        num_inference_steps=num_diffusion_steps,
        guidance_scale=guidance_scale,
        negative_prompt=negative_prompt
    ).images[0]

    inpainted_image = inpainted_image.resize((w, h))

    return inpainted_image

demo = gr.Blocks()

with demo:
    input_image = gr.Image(value="http://images.cocodataset.org/val2017/000000039769.jpg", type='pil', label="Input Image")

    bt_masks = gr.Button("Compute Masks")

    with gr.Row():
        mask_image = gr.Image(type='numpy', label="Diffusion Mask")
        masked_image = gr.Image(type='pil', label="Masked Image")
    mask_storage = gr.State()

    with gr.Row():
        max_slider = gr.Slider(minimum=1, maximum=99, value=23, step=2, label="Mask Overflow")
        min_slider = gr.Slider(minimum=1, maximum=99, value=5, step=2, label="Mask Denoising")

        mask_checkboxes = gr.CheckboxGroup(interactive=True, label="Mask Selection")

    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox("Two ginger cats lying together on a pink sofa. There are two TV remotes. High definition.", label="Prompt")
            negative_prompt = gr.Textbox(label="Negative Prompt")
        with gr.Column():
            steps_slider = gr.Slider(minimum=1, maximum=100, value=50, label="Inference Steps")
            guidance_slider = gr.Slider(minimum=0.0, maximum=50.0, value=7.5, step=0.1, label="Guidance Scale")
            bt_diffusion = gr.Button("Run Diffusion")

        inpainted_image = gr.Image(type='pil', label="Inpainted Image")

    update_mask_inputs = [input_image, mask_storage, mask_checkboxes, max_slider, min_slider]
    update_mask_outputs = [mask_image, masked_image]

    input_image.change(lambda: gr.CheckboxGroup.update(choices=[], value=[]), outputs=mask_checkboxes)

    bt_masks.click(fn_segmentation, inputs=[input_image, max_slider, min_slider], outputs=[mask_storage, mask_checkboxes, mask_image, masked_image])

    max_slider.change(fn_update_mask, inputs=update_mask_inputs, outputs=update_mask_outputs)
    min_slider.change(fn_update_mask, inputs=update_mask_inputs, outputs=update_mask_outputs)
    mask_checkboxes.change(fn_update_mask, inputs=update_mask_inputs, outputs=update_mask_outputs)

    bt_diffusion.click(fn_diffusion, inputs=[
        prompt, 
        masked_image, 
        mask_image, 
        steps_slider, 
        guidance_slider, 
        negative_prompt
    ], outputs=inpainted_image)

demo.launch()