File size: 10,742 Bytes
04bf3ab
 
 
 
 
 
7d008e4
 
04bf3ab
3e7b7cc
 
04bf3ab
 
 
 
 
b4542eb
 
 
 
 
 
 
 
 
 
 
 
04bf3ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d008e4
04bf3ab
 
 
 
 
 
 
 
 
b4542eb
04bf3ab
 
 
 
557cf2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d008e4
 
 
 
 
 
557cf2f
7d008e4
557cf2f
 
 
 
 
 
 
 
 
 
 
 
7d008e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
557cf2f
b4542eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
557cf2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d008e4
 
 
 
 
 
557cf2f
 
7d008e4
 
 
557cf2f
7d008e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
557cf2f
7d008e4
557cf2f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import io
import requests
import numpy as np
import torch
from PIL import Image
from skimage.measure import block_reduce
from typing import List
from functools import reduce

import gradio as gr

from transformers import DetrFeatureExtractor, DetrForSegmentation, DetrConfig
from transformers.models.detr.feature_extraction_detr import rgb_to_id

from diffusers import StableDiffusionInpaintPipeline

# TODO: maybe need to port to `Blocks` system
# allegedly provides:
# Have multi-step interfaces, in which the output of one model becomes the 
# input to the next model, or have more flexible data flows in general.

# and:
# Change a component’s properties (for example, the choices in a dropdown) or its visibility based on user input
# https://huggingface.co/course/chapter9/7?fw=pt

torch.inference_mode()
torch.no_grad()

def load_segmentation_models(model_name: str = 'facebook/detr-resnet-50-panoptic'):
    feature_extractor = DetrFeatureExtractor.from_pretrained(model_name)
    model = DetrForSegmentation.from_pretrained(model_name)
    cfg = DetrConfig.from_pretrained(model_name)

    return feature_extractor, model, cfg

def load_diffusion_pipeline(model_name: str = 'runwayml/stable-diffusion-inpainting'):
    return StableDiffusionInpaintPipeline.from_pretrained(
        model_name,
        revision='fp16',
        torch_dtype=torch.float16
    )

def get_device(try_cuda=True):
    return torch.device('cuda' if try_cuda and torch.cuda.is_available() else 'cpu')

def min_pool(x: torch.Tensor, kernel_size: int):
    pad_size = (kernel_size - 1) // 2
    return -torch.nn.functional.max_pool2d(-x, kernel_size, (1, 1), padding=pad_size) 

def max_pool(x: torch.Tensor, kernel_size: int):
    pad_size = (kernel_size - 1) // 2
    return torch.nn.functional.max_pool2d(x, kernel_size, (1, 1), padding=pad_size) 

def clean_mask(mask, max_kernel: int = 23, min_kernel: int = 5):
    mask = torch.Tensor(mask[None, None]).float()
    mask = min_pool(mask, min_kernel)
    mask = max_pool(mask, max_kernel)
    mask = mask.bool().squeeze().numpy()
    return mask

device = get_device()

feature_extractor, segmentation_model, segmentation_cfg = load_segmentation_models()
# segmentation_model = segmentation_model.to(device)

pipe = load_diffusion_pipeline()
pipe = pipe.to(device)

def fn_segmentation(image, max_kernel, min_kernel):
    inputs = feature_extractor(images=image, return_tensors="pt")
    outputs = segmentation_model(**inputs)

    processed_sizes = torch.as_tensor(inputs["pixel_values"].shape[-2:]).unsqueeze(0)
    result = feature_extractor.post_process_panoptic(outputs, processed_sizes)[0]

    panoptic_seg = Image.open(io.BytesIO(result["png_string"])).resize((image.width, image.height))
    panoptic_seg = np.array(panoptic_seg, dtype=np.uint8)

    panoptic_seg_id = rgb_to_id(panoptic_seg)

    raw_masks = []
    for s in result['segments_info']:
        m = panoptic_seg_id == s['id']
        raw_masks.append(m.astype(np.uint8) * 255)
    
    # masks = fn_clean(raw_masks, max_kernel, min_kernel)
    checkbox_choices = [f"{s['id']}:{segmentation_cfg.id2label[s['category_id']]}" for s in result['segments_info']]
    
    checkbox_group = gr.CheckboxGroup.update(
        choices=checkbox_choices
    )

    return raw_masks, checkbox_group, gr.Image.update(value=np.zeros((image.height, image.width))), gr.Image.update(value=image)

def fn_clean(masks, max_kernel, min_kernel):
    out = []
    for m in masks:
        m = torch.FloatTensor(m)[None, None]
        m = min_pool(m, min_kernel)
        m = max_pool(m, max_kernel)
        m = m.squeeze().numpy().astype(np.uint8)
        out.append(m)

    return out

def fn_update_mask(
        image: Image,
        masks: List[np.array], 
        masks_enabled: List[int], 
        max_kernel: int,
        min_kernel: int,
    ):
    masks_enabled = [int(m.split(':')[0]) for m in masks_enabled]
    combined_mask = reduce(lambda x, y: x | y, [masks[i] for i in masks_enabled], np.zeros_like(masks[0], dtype=bool))
    combined_mask = clean_mask(combined_mask, max_kernel, min_kernel)

    masked_image = np.array(image).copy()
    masked_image[combined_mask] = 0.0

    return combined_mask.astype(np.uint8) * 255, Image.fromarray(masked_image)

def fn_diffusion(prompt: str, masked_image: Image, mask: Image, num_diffusion_steps: int):
    STABLE_DIFFUSION_SMALL_EDGE = 512

    w, h = masked_image.size
    is_width_larger = w > h
    resize_ratio = STABLE_DIFFUSION_SMALL_EDGE / (h if is_width_larger else w)

    new_width = int(w * resize_ratio) if is_width_larger else STABLE_DIFFUSION_SMALL_EDGE
    new_height = STABLE_DIFFUSION_SMALL_EDGE if is_width_larger else int(h * resize_ratio)

    new_width += 8 - (new_width % 8) if is_width_larger else 0
    new_height += 0 if is_width_larger else 8 - (new_height % 8)

    mask = Image.fromarray(mask).convert("RGB").resize((new_width, new_height))
    masked_image = masked_image.convert("RGB").resize((new_width, new_height))

    inpainted_image = pipe(
        height=new_height, 
        width=new_width, 
        prompt=prompt,
        image=masked_image, 
        mask_image=mask,
        num_inference_steps=num_diffusion_steps
    ).images[0]

    inpainted_image = inpainted_image.resize((w, h))

    return inpainted_image

def fn_segmentation_diffusion(prompt, mask_indices, image, max_kernel, min_kernel, num_diffusion_steps):
    mask_indices = [int(i) for i in mask_indices.split(',')]
    inputs = feature_extractor(images=image, return_tensors="pt")
    outputs = segmentation_model(**inputs)

    processed_sizes = torch.as_tensor(inputs["pixel_values"].shape[-2:]).unsqueeze(0)
    result = feature_extractor.post_process_panoptic(outputs, processed_sizes)[0]

    panoptic_seg = Image.open(io.BytesIO(result["png_string"])).resize((image.width, image.height))
    panoptic_seg = np.array(panoptic_seg, dtype=np.uint8)

    class_str = '\n'.join(segmentation_cfg.id2label[s['category_id']] for s in result['segments_info'])

    panoptic_seg_id = rgb_to_id(panoptic_seg)

    if len(mask_indices) > 0:
        mask = (panoptic_seg_id == mask_indices[0])
    for idx in mask_indices[1:]:
        mask = mask | (panoptic_seg_id == idx)
    mask = clean_mask(mask, min_kernel=min_kernel, max_kernel=max_kernel)

    masked_image = np.array(image).copy()
    masked_image[mask] = 0

    masked_image = Image.fromarray(masked_image).resize(image.size)
    mask = Image.fromarray(mask.astype(np.uint8) * 255).resize(image.size)

    if num_diffusion_steps == 0:
        return masked_image, masked_image, class_str

    STABLE_DIFFUSION_SMALL_EDGE = 512

    assert masked_image.size == mask.size
    w, h = masked_image.size
    is_width_larger = w > h
    resize_ratio = STABLE_DIFFUSION_SMALL_EDGE / (h if is_width_larger else w)

    new_width = int(w * resize_ratio) if is_width_larger else STABLE_DIFFUSION_SMALL_EDGE
    new_height = STABLE_DIFFUSION_SMALL_EDGE if is_width_larger else int(h * resize_ratio)

    new_width += 8 - (new_width % 8) if is_width_larger else 0
    new_height += 0 if is_width_larger else 8 - (new_height % 8)

    mask = mask.convert("RGB").resize((new_width, new_height))
    masked_image = masked_image.convert("RGB").resize((new_width, new_height))

    inpainted_image = pipe(
        height=new_height, 
        width=new_width, 
        prompt=prompt,
        image=masked_image, 
        mask_image=mask,
        num_inference_steps=num_diffusion_steps
    ).images[0]

    return masked_image, inpainted_image, class_str


# iface_segmentation = gr.Interface(
    # fn=fn_segmentation, 
    # inputs=[
        # "text", 
        # "text", 
        # gr.Image(value="http://images.cocodataset.org/val2017/000000039769.jpg"),
        # gr.Slider(minimum=1, maximum=99, value=23, step=2),
        # gr.Slider(minimum=1, maximum=99, value=5, step=2),
        # gr.Slider(minimum=0, maximum=100, value=50, step=1),
    # ], 
    # outputs=["text", gr.Image(type="pil"), gr.Image(type="pil"), "number", "text"]
# )

# iface_diffusion = gr.Interface(
    # fn=fn_diffusion,
    # inputs=["text", gr.Image(type='pil'), gr.Image(type='pil'), "number", "text"],
    # outputs=[gr.Image(), gr.Image(), gr.Textbox()]
# )

# iface = gr.Series(
    # iface_segmentation, iface_diffusion,

# iface = gr.Interface(
    # fn=fn_segmentation_diffusion,
    # inputs=[
        # "text",
        # "text", 
        # gr.Image(value="http://images.cocodataset.org/val2017/000000039769.jpg", type='pil'),
        # gr.Slider(minimum=1, maximum=99, value=23, step=2),
        # gr.Slider(minimum=1, maximum=99, value=5, step=2),
        # gr.Slider(minimum=0, maximum=100, value=50, step=1),
    # ], 
    # outputs=[gr.Image(), gr.Image(), gr.Textbox(interactive=False)]
# )

# iface = gr.Interface(
    # fn=fn_segmentation,
    # inputs=[
        # gr.Image(value="http://images.cocodataset.org/val2017/000000039769.jpg", type='pil'),
        # gr.Slider(minimum=1, maximum=99, value=23, step=2),
        # gr.Slider(minimum=1, maximum=99, value=5, step=2),
    # ],
    # outputs=gr.Gallery()
# )

# iface.launch()

demo = gr.Blocks()

with demo:
    input_image = gr.Image(value="http://images.cocodataset.org/val2017/000000039769.jpg", type='pil')

    bt_masks = gr.Button("Compute Masks")

    with gr.Row():
        mask_image = gr.Image(type='numpy')
        masked_image = gr.Image(type='pil')
    mask_storage = gr.State()

    with gr.Row():
        max_slider = gr.Slider(minimum=1, maximum=99, value=23, step=2)
        min_slider = gr.Slider(minimum=1, maximum=99, value=5, step=2)

        mask_checkboxes = gr.CheckboxGroup(interactive=True)

    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox("Two ginger cats lying together on a pink sofa. There are two TV remotes. High definition.")
            steps_slider = gr.Slider(minimum=1, maximum=100, value=50)
            bt_diffusion = gr.Button("Run Diffusion")

    inpainted_image = gr.Image(type='pil')


    bt_masks.click(fn_segmentation, inputs=[input_image, max_slider, min_slider], outputs=[mask_storage, mask_checkboxes, mask_image, masked_image])

    max_slider.change(fn_update_mask, inputs=[input_image, mask_storage, mask_checkboxes, max_slider, min_slider], outputs=[mask_image, masked_image])
    min_slider.change(fn_update_mask, inputs=[input_image, mask_storage, mask_checkboxes, max_slider, min_slider], outputs=[mask_image, masked_image])
    mask_checkboxes.change(fn_update_mask, inputs=[input_image, mask_storage, mask_checkboxes, max_slider, min_slider], outputs=[mask_image, masked_image])

    bt_diffusion.click(fn_diffusion, inputs=[prompt, masked_image, mask_image, steps_slider], outputs=inpainted_image)

demo.launch()