Spaces:
Runtime error
Runtime error
File size: 10,742 Bytes
04bf3ab 7d008e4 04bf3ab 3e7b7cc 04bf3ab b4542eb 04bf3ab 7d008e4 04bf3ab b4542eb 04bf3ab 557cf2f 7d008e4 557cf2f 7d008e4 557cf2f 7d008e4 557cf2f b4542eb 557cf2f 7d008e4 557cf2f 7d008e4 557cf2f 7d008e4 557cf2f 7d008e4 557cf2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import io
import requests
import numpy as np
import torch
from PIL import Image
from skimage.measure import block_reduce
from typing import List
from functools import reduce
import gradio as gr
from transformers import DetrFeatureExtractor, DetrForSegmentation, DetrConfig
from transformers.models.detr.feature_extraction_detr import rgb_to_id
from diffusers import StableDiffusionInpaintPipeline
# TODO: maybe need to port to `Blocks` system
# allegedly provides:
# Have multi-step interfaces, in which the output of one model becomes the
# input to the next model, or have more flexible data flows in general.
# and:
# Change a component’s properties (for example, the choices in a dropdown) or its visibility based on user input
# https://huggingface.co/course/chapter9/7?fw=pt
torch.inference_mode()
torch.no_grad()
def load_segmentation_models(model_name: str = 'facebook/detr-resnet-50-panoptic'):
feature_extractor = DetrFeatureExtractor.from_pretrained(model_name)
model = DetrForSegmentation.from_pretrained(model_name)
cfg = DetrConfig.from_pretrained(model_name)
return feature_extractor, model, cfg
def load_diffusion_pipeline(model_name: str = 'runwayml/stable-diffusion-inpainting'):
return StableDiffusionInpaintPipeline.from_pretrained(
model_name,
revision='fp16',
torch_dtype=torch.float16
)
def get_device(try_cuda=True):
return torch.device('cuda' if try_cuda and torch.cuda.is_available() else 'cpu')
def min_pool(x: torch.Tensor, kernel_size: int):
pad_size = (kernel_size - 1) // 2
return -torch.nn.functional.max_pool2d(-x, kernel_size, (1, 1), padding=pad_size)
def max_pool(x: torch.Tensor, kernel_size: int):
pad_size = (kernel_size - 1) // 2
return torch.nn.functional.max_pool2d(x, kernel_size, (1, 1), padding=pad_size)
def clean_mask(mask, max_kernel: int = 23, min_kernel: int = 5):
mask = torch.Tensor(mask[None, None]).float()
mask = min_pool(mask, min_kernel)
mask = max_pool(mask, max_kernel)
mask = mask.bool().squeeze().numpy()
return mask
device = get_device()
feature_extractor, segmentation_model, segmentation_cfg = load_segmentation_models()
# segmentation_model = segmentation_model.to(device)
pipe = load_diffusion_pipeline()
pipe = pipe.to(device)
def fn_segmentation(image, max_kernel, min_kernel):
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = segmentation_model(**inputs)
processed_sizes = torch.as_tensor(inputs["pixel_values"].shape[-2:]).unsqueeze(0)
result = feature_extractor.post_process_panoptic(outputs, processed_sizes)[0]
panoptic_seg = Image.open(io.BytesIO(result["png_string"])).resize((image.width, image.height))
panoptic_seg = np.array(panoptic_seg, dtype=np.uint8)
panoptic_seg_id = rgb_to_id(panoptic_seg)
raw_masks = []
for s in result['segments_info']:
m = panoptic_seg_id == s['id']
raw_masks.append(m.astype(np.uint8) * 255)
# masks = fn_clean(raw_masks, max_kernel, min_kernel)
checkbox_choices = [f"{s['id']}:{segmentation_cfg.id2label[s['category_id']]}" for s in result['segments_info']]
checkbox_group = gr.CheckboxGroup.update(
choices=checkbox_choices
)
return raw_masks, checkbox_group, gr.Image.update(value=np.zeros((image.height, image.width))), gr.Image.update(value=image)
def fn_clean(masks, max_kernel, min_kernel):
out = []
for m in masks:
m = torch.FloatTensor(m)[None, None]
m = min_pool(m, min_kernel)
m = max_pool(m, max_kernel)
m = m.squeeze().numpy().astype(np.uint8)
out.append(m)
return out
def fn_update_mask(
image: Image,
masks: List[np.array],
masks_enabled: List[int],
max_kernel: int,
min_kernel: int,
):
masks_enabled = [int(m.split(':')[0]) for m in masks_enabled]
combined_mask = reduce(lambda x, y: x | y, [masks[i] for i in masks_enabled], np.zeros_like(masks[0], dtype=bool))
combined_mask = clean_mask(combined_mask, max_kernel, min_kernel)
masked_image = np.array(image).copy()
masked_image[combined_mask] = 0.0
return combined_mask.astype(np.uint8) * 255, Image.fromarray(masked_image)
def fn_diffusion(prompt: str, masked_image: Image, mask: Image, num_diffusion_steps: int):
STABLE_DIFFUSION_SMALL_EDGE = 512
w, h = masked_image.size
is_width_larger = w > h
resize_ratio = STABLE_DIFFUSION_SMALL_EDGE / (h if is_width_larger else w)
new_width = int(w * resize_ratio) if is_width_larger else STABLE_DIFFUSION_SMALL_EDGE
new_height = STABLE_DIFFUSION_SMALL_EDGE if is_width_larger else int(h * resize_ratio)
new_width += 8 - (new_width % 8) if is_width_larger else 0
new_height += 0 if is_width_larger else 8 - (new_height % 8)
mask = Image.fromarray(mask).convert("RGB").resize((new_width, new_height))
masked_image = masked_image.convert("RGB").resize((new_width, new_height))
inpainted_image = pipe(
height=new_height,
width=new_width,
prompt=prompt,
image=masked_image,
mask_image=mask,
num_inference_steps=num_diffusion_steps
).images[0]
inpainted_image = inpainted_image.resize((w, h))
return inpainted_image
def fn_segmentation_diffusion(prompt, mask_indices, image, max_kernel, min_kernel, num_diffusion_steps):
mask_indices = [int(i) for i in mask_indices.split(',')]
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = segmentation_model(**inputs)
processed_sizes = torch.as_tensor(inputs["pixel_values"].shape[-2:]).unsqueeze(0)
result = feature_extractor.post_process_panoptic(outputs, processed_sizes)[0]
panoptic_seg = Image.open(io.BytesIO(result["png_string"])).resize((image.width, image.height))
panoptic_seg = np.array(panoptic_seg, dtype=np.uint8)
class_str = '\n'.join(segmentation_cfg.id2label[s['category_id']] for s in result['segments_info'])
panoptic_seg_id = rgb_to_id(panoptic_seg)
if len(mask_indices) > 0:
mask = (panoptic_seg_id == mask_indices[0])
for idx in mask_indices[1:]:
mask = mask | (panoptic_seg_id == idx)
mask = clean_mask(mask, min_kernel=min_kernel, max_kernel=max_kernel)
masked_image = np.array(image).copy()
masked_image[mask] = 0
masked_image = Image.fromarray(masked_image).resize(image.size)
mask = Image.fromarray(mask.astype(np.uint8) * 255).resize(image.size)
if num_diffusion_steps == 0:
return masked_image, masked_image, class_str
STABLE_DIFFUSION_SMALL_EDGE = 512
assert masked_image.size == mask.size
w, h = masked_image.size
is_width_larger = w > h
resize_ratio = STABLE_DIFFUSION_SMALL_EDGE / (h if is_width_larger else w)
new_width = int(w * resize_ratio) if is_width_larger else STABLE_DIFFUSION_SMALL_EDGE
new_height = STABLE_DIFFUSION_SMALL_EDGE if is_width_larger else int(h * resize_ratio)
new_width += 8 - (new_width % 8) if is_width_larger else 0
new_height += 0 if is_width_larger else 8 - (new_height % 8)
mask = mask.convert("RGB").resize((new_width, new_height))
masked_image = masked_image.convert("RGB").resize((new_width, new_height))
inpainted_image = pipe(
height=new_height,
width=new_width,
prompt=prompt,
image=masked_image,
mask_image=mask,
num_inference_steps=num_diffusion_steps
).images[0]
return masked_image, inpainted_image, class_str
# iface_segmentation = gr.Interface(
# fn=fn_segmentation,
# inputs=[
# "text",
# "text",
# gr.Image(value="http://images.cocodataset.org/val2017/000000039769.jpg"),
# gr.Slider(minimum=1, maximum=99, value=23, step=2),
# gr.Slider(minimum=1, maximum=99, value=5, step=2),
# gr.Slider(minimum=0, maximum=100, value=50, step=1),
# ],
# outputs=["text", gr.Image(type="pil"), gr.Image(type="pil"), "number", "text"]
# )
# iface_diffusion = gr.Interface(
# fn=fn_diffusion,
# inputs=["text", gr.Image(type='pil'), gr.Image(type='pil'), "number", "text"],
# outputs=[gr.Image(), gr.Image(), gr.Textbox()]
# )
# iface = gr.Series(
# iface_segmentation, iface_diffusion,
# iface = gr.Interface(
# fn=fn_segmentation_diffusion,
# inputs=[
# "text",
# "text",
# gr.Image(value="http://images.cocodataset.org/val2017/000000039769.jpg", type='pil'),
# gr.Slider(minimum=1, maximum=99, value=23, step=2),
# gr.Slider(minimum=1, maximum=99, value=5, step=2),
# gr.Slider(minimum=0, maximum=100, value=50, step=1),
# ],
# outputs=[gr.Image(), gr.Image(), gr.Textbox(interactive=False)]
# )
# iface = gr.Interface(
# fn=fn_segmentation,
# inputs=[
# gr.Image(value="http://images.cocodataset.org/val2017/000000039769.jpg", type='pil'),
# gr.Slider(minimum=1, maximum=99, value=23, step=2),
# gr.Slider(minimum=1, maximum=99, value=5, step=2),
# ],
# outputs=gr.Gallery()
# )
# iface.launch()
demo = gr.Blocks()
with demo:
input_image = gr.Image(value="http://images.cocodataset.org/val2017/000000039769.jpg", type='pil')
bt_masks = gr.Button("Compute Masks")
with gr.Row():
mask_image = gr.Image(type='numpy')
masked_image = gr.Image(type='pil')
mask_storage = gr.State()
with gr.Row():
max_slider = gr.Slider(minimum=1, maximum=99, value=23, step=2)
min_slider = gr.Slider(minimum=1, maximum=99, value=5, step=2)
mask_checkboxes = gr.CheckboxGroup(interactive=True)
with gr.Row():
with gr.Column():
prompt = gr.Textbox("Two ginger cats lying together on a pink sofa. There are two TV remotes. High definition.")
steps_slider = gr.Slider(minimum=1, maximum=100, value=50)
bt_diffusion = gr.Button("Run Diffusion")
inpainted_image = gr.Image(type='pil')
bt_masks.click(fn_segmentation, inputs=[input_image, max_slider, min_slider], outputs=[mask_storage, mask_checkboxes, mask_image, masked_image])
max_slider.change(fn_update_mask, inputs=[input_image, mask_storage, mask_checkboxes, max_slider, min_slider], outputs=[mask_image, masked_image])
min_slider.change(fn_update_mask, inputs=[input_image, mask_storage, mask_checkboxes, max_slider, min_slider], outputs=[mask_image, masked_image])
mask_checkboxes.change(fn_update_mask, inputs=[input_image, mask_storage, mask_checkboxes, max_slider, min_slider], outputs=[mask_image, masked_image])
bt_diffusion.click(fn_diffusion, inputs=[prompt, masked_image, mask_image, steps_slider], outputs=inpainted_image)
demo.launch()
|