Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig | |
description = """# <p style="text-align: center; color: #292b47;"> ποΈ <span style='color: #3264ff;'>DeciCoder-6B:</span> A Fast Code Generation Modelπ¨ </p> | |
<span style='color: #292b47;'>Welcome to <a href="https://huggingface.co/Deci/DeciCoder-6B" style="color: #3264ff;">DeciCoder</a>! | |
DeciCoder-6B was trained on the Python, Java, Javascript, Rust, C++, C, and C# subset of the Starcoder Training Dataset, and it's released under the Apache 2.0 license. This model is capable of code-completion and instruction following. It surpasses CodeGen 2.5 7B, CodeLlama 7B, abd StarCoder 7B in its supported languages on HumanEval, and leads by 3 points in Python over StarCoderBase 15.5B.""" | |
GENERATION_TITLE= "<p style='font-size: 24px; color: #292b47;'>π» Your generated code:</p>" | |
def instantiate_huggingface_model( | |
model_name, | |
quantization_config=None, | |
device_map="auto", | |
use_cache=True, | |
trust_remote_code=None, | |
pad_token=None, | |
padding_side="left" | |
): | |
""" | |
Instantiate a HuggingFace model with optional quantization using the BitsAndBytes library. | |
Parameters: | |
- model_name (str): The name of the model to load from HuggingFace's model hub. | |
- quantization_config (BitsAndBytesConfig, optional): Configuration for model quantization. | |
If None, defaults to a pre-defined quantization configuration for 4-bit quantization. | |
- device_map (str, optional): Device placement strategy for model layers ('auto' by default). | |
- use_cache (bool, optional): Whether to cache model outputs (False by default). | |
- trust_remote_code (bool, optional): Whether to trust remote code for custom layers (True by default). | |
- pad_token (str, optional): The pad token to be used by the tokenizer. If None, uses the EOS token. | |
- padding_side (str, optional): The side on which to pad the sequences ('left' by default). | |
Returns: | |
- model (PreTrainedModel): The instantiated model ready for inference or fine-tuning. | |
- tokenizer (PreTrainedTokenizer): The tokenizer associated with the model. | |
The function will throw an exception if model loading fails. | |
""" | |
# If quantization_config is not provided, use the default configuration | |
if quantization_config is None: | |
quantization_config = BitsAndBytesConfig( | |
load_in_8bit=True, | |
low_cpu_mem_usage=True, | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
quantization_config=quantization_config, | |
device_map=device_map, | |
use_cache=use_cache, | |
trust_remote_code=trust_remote_code | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, | |
trust_remote_code=trust_remote_code) | |
if pad_token is not None: | |
tokenizer.pad_token = pad_token | |
else: | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.padding_side = padding_side | |
return model, tokenizer | |
model, tokenizer = instantiate_huggingface_model("Deci-early-access/DeciCoder-6B", trust_remote_code=True) | |
pipe = pipeline("text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
device_map="auto", | |
max_length=2048, | |
temperature=1e-3, | |
) | |
def post_processing(prompt: str, completion: str) -> str: | |
""" | |
Post-processes the generated code completion with HTML styling. | |
Args: | |
prompt (str): The input code prompt. | |
completion (str): The generated code completion. | |
Returns: | |
str: The HTML-styled code with prompt and completion. | |
""" | |
completion = "<span style='color: #ff5b86;'>" + completion + "</span>" | |
prompt = "<span style='color: #7484b7;'>" + prompt + "</span>" | |
code_html = f"<br><hr><br><pre style='font-size: 12px'><code>{prompt}{completion}</code></pre><br><hr>" | |
return GENERATION_TITLE + code_html | |
def code_generation(prompt: str) -> str: | |
""" | |
Generates code based on the given prompt. Handles both regular and FIM (Fill-In-Missing) generation. | |
Args: | |
prompt (str): The input code prompt. | |
Returns: | |
str: The HTML-styled generated code. | |
""" | |
completion = pipe(prompt)[0]['generated_text'] | |
completion = completion[len(prompt):] | |
return post_processing(prompt, completion) | |
demo = gr.Blocks( | |
css=".gradio-container {background-color: #FAFBFF; color: #292b47}" | |
) | |
with demo: | |
with gr.Row(): | |
_, colum_2, _ = gr.Column(scale=1), gr.Column(scale=6), gr.Column(scale=1) | |
with colum_2: | |
gr.Markdown(value=description) | |
code = gr.Code(lines=5, language="python", label="Input code", value="def nth_element_in_fibonnaci(element):\n \"\"\"Returns the nth element of the Fibonnaci sequence.\"\"\"") | |
run = gr.Button(value="π¨π½βπ» Generate code", size='lg') | |
output = gr.HTML(label="π» Your generated code") | |
event = run.click(code_generation, [code], output) | |
gr.HTML(label="Keep in touch", value="<img src='https://huggingface.co/spaces/Deci/DeciCoder-Demo/resolve/main/deci-coder-banner.png' alt='Keep in touch' style='display: block; color: #292b47; margin: auto; max-width: 800px;'>") | |
demo.launch() |