harpreetsahota's picture
Update app.py
0ab46f1 verified
raw
history blame
5.34 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig
description = """# <p style="text-align: center; color: #292b47;"> 🏎️ <span style='color: #3264ff;'>DeciCoder-6B:</span> A Fast Code Generation ModelπŸ’¨ </p>
<span style='color: #292b47;'>Welcome to <a href="https://huggingface.co/Deci/DeciCoder-6B" style="color: #3264ff;">DeciCoder</a>!
DeciCoder-6B was trained on the Python, Java, Javascript, Rust, C++, C, and C# subset of the Starcoder Training Dataset, and it's released under the Apache 2.0 license. This model is capable of code-completion and instruction following. It surpasses CodeGen 2.5 7B, CodeLlama 7B, abd StarCoder 7B in its supported languages on HumanEval, and leads by 3 points in Python over StarCoderBase 15.5B."""
GENERATION_TITLE= "<p style='font-size: 24px; color: #292b47;'>πŸ’» Your generated code:</p>"
def instantiate_huggingface_model(
model_name,
quantization_config=None,
device_map="auto",
use_cache=True,
trust_remote_code=None,
pad_token=None,
padding_side="left"
):
"""
Instantiate a HuggingFace model with optional quantization using the BitsAndBytes library.
Parameters:
- model_name (str): The name of the model to load from HuggingFace's model hub.
- quantization_config (BitsAndBytesConfig, optional): Configuration for model quantization.
If None, defaults to a pre-defined quantization configuration for 4-bit quantization.
- device_map (str, optional): Device placement strategy for model layers ('auto' by default).
- use_cache (bool, optional): Whether to cache model outputs (False by default).
- trust_remote_code (bool, optional): Whether to trust remote code for custom layers (True by default).
- pad_token (str, optional): The pad token to be used by the tokenizer. If None, uses the EOS token.
- padding_side (str, optional): The side on which to pad the sequences ('left' by default).
Returns:
- model (PreTrainedModel): The instantiated model ready for inference or fine-tuning.
- tokenizer (PreTrainedTokenizer): The tokenizer associated with the model.
The function will throw an exception if model loading fails.
"""
# If quantization_config is not provided, use the default configuration
if quantization_config is None:
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
low_cpu_mem_usage=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=quantization_config,
device_map=device_map,
use_cache=use_cache,
trust_remote_code=trust_remote_code
)
tokenizer = AutoTokenizer.from_pretrained(model_name,
trust_remote_code=trust_remote_code)
if pad_token is not None:
tokenizer.pad_token = pad_token
else:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = padding_side
return model, tokenizer
model, tokenizer = instantiate_huggingface_model("Deci-early-access/DeciCoder-6B", trust_remote_code=True)
pipe = pipeline("text-generation",
model=model,
tokenizer=tokenizer,
device_map="auto",
max_length=2048,
temperature=1e-3,
)
def post_processing(prompt: str, completion: str) -> str:
"""
Post-processes the generated code completion with HTML styling.
Args:
prompt (str): The input code prompt.
completion (str): The generated code completion.
Returns:
str: The HTML-styled code with prompt and completion.
"""
completion = "<span style='color: #ff5b86;'>" + completion + "</span>"
prompt = "<span style='color: #7484b7;'>" + prompt + "</span>"
code_html = f"<br><hr><br><pre style='font-size: 12px'><code>{prompt}{completion}</code></pre><br><hr>"
return GENERATION_TITLE + code_html
def code_generation(prompt: str) -> str:
"""
Generates code based on the given prompt. Handles both regular and FIM (Fill-In-Missing) generation.
Args:
prompt (str): The input code prompt.
Returns:
str: The HTML-styled generated code.
"""
completion = pipe(prompt)[0]['generated_text']
completion = completion[len(prompt):]
return post_processing(prompt, completion)
demo = gr.Blocks(
css=".gradio-container {background-color: #FAFBFF; color: #292b47}"
)
with demo:
with gr.Row():
_, colum_2, _ = gr.Column(scale=1), gr.Column(scale=6), gr.Column(scale=1)
with colum_2:
gr.Markdown(value=description)
code = gr.Code(lines=5, language="python", label="Input code", value="def nth_element_in_fibonnaci(element):\n \"\"\"Returns the nth element of the Fibonnaci sequence.\"\"\"")
run = gr.Button(value="πŸ‘¨πŸ½β€πŸ’» Generate code", size='lg')
output = gr.HTML(label="πŸ’» Your generated code")
event = run.click(code_generation, [code], output)
gr.HTML(label="Keep in touch", value="<img src='https://huggingface.co/spaces/Deci/DeciCoder-Demo/resolve/main/deci-coder-banner.png' alt='Keep in touch' style='display: block; color: #292b47; margin: auto; max-width: 800px;'>")
demo.launch()