Andrew Green
Use more recent default start date
20fccc0
raw
history blame
11.5 kB
import gradio as gr
import spaces
import polars as pl
from datetime import datetime
from functools import lru_cache
from transformers import pipeline
from typing import Dict
import requests
import xml.etree.ElementTree as ET
import time
from typing import List, Tuple, Dict
label_lookup = {
"LABEL_0": "NOT_CURATEABLE",
"LABEL_1": "CURATEABLE"
}
@spaces.GPU
@lru_cache
def get_pipeline():
print("fetching model and building pipeline")
model_name = "afg1/pombe_curation_fold_0"
pipe = pipeline(model=model_name, task="text-classification")
return pipe
@spaces.GPU
def classify_abstracts(abstracts:Dict[str, str],batch_size=64, progress=gr.Progress()) -> None:
pipe = get_pipeline()
# return classification
results = []
total = len(abstracts)
# Convert dictionary to lists of PMIDs and abstracts, preserving order
pmids = list(abstracts.keys())
abstract_texts = list(abstracts.values())
# Initialize progress bar
progress(0, desc="Starting classification...")
# Process in batches
for i in range(0, total, batch_size):
# Get current batch
batch_abstracts = abstract_texts[i:i + batch_size]
batch_pmids = pmids[i:i + batch_size]
try:
# Classify the batch
classifications = pipe(batch_abstracts)
# Process each result in the batch
for pmid, classification in zip(batch_pmids, classifications):
results.append({
'pmid': pmid,
'classification': label_lookup[classification['label']],
'score': classification['score']
})
# Update progress
progress(min((i + batch_size) / total, 1.0),
desc=f"Classified {min(i + batch_size, total)}/{total} abstracts...")
except Exception as e:
print(f"Error classifying batch starting at index {i}: {str(e)}")
continue
progress(1.0, desc="Classification complete!")
return results
@lru_cache
def fetch_latest_canto_dump() -> pl.DataFrame:
"""
Read the latest pombase canto dump direct from the URL
"""
url = "https://curation.pombase.org/kmr44/canto_pombe_pubs.tsv"
return pl.read_csv(url, separator='\t')
def filter_new_hits(canto_pmcids: pl.DataFrame, new_pmcids: List[str]) -> List[str]:
"""
Convert the list of PMCIDs from the search to a dataframe and do an anti-join to
find new stuff
"""
new_pmids = pl.DataFrame({"pmid": new_pmcids})
uncurated = new_pmids.join(canto_pmcids, on="pmid", how="anti")
return uncurated.get_column("pmid").to_list()
def fetch_abstracts_batch(pmids: List[str], batch_size: int = 200) -> Dict[str, str]:
"""
Fetch abstracts for a list of PMIDs in batches
Args:
pmids (List[str]): List of PMIDs to fetch abstracts for
batch_size (int): Number of PMIDs to process per batch
Returns:
Dict[str, str]: Dictionary mapping PMIDs to their abstracts
"""
base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi"
all_abstracts = {}
# Process PMIDs in batches
for i in range(0, len(pmids), batch_size):
batch_pmids = pmids[i:i + batch_size]
pmids_string = ",".join(batch_pmids)
print(f"Processing batch {i//batch_size + 1} of {(len(pmids) + batch_size - 1)//batch_size}")
params = {
"db": "pubmed",
"id": pmids_string,
"retmode": "xml",
"rettype": "abstract"
}
try:
response = requests.get(base_url, params=params)
response.raise_for_status()
# Parse XML response
root = ET.fromstring(response.content)
# Iterate through each article in the batch
for article in root.findall(".//PubmedArticle"):
# Get PMID
pmid = article.find(".//PMID").text
# Find abstract text
abstract_element = article.find(".//Abstract/AbstractText")
if abstract_element is not None:
# Handle structured abstracts
if 'Label' in abstract_element.attrib:
abstract_sections = article.findall(".//Abstract/AbstractText")
abstract_text = "\n".join(
f"{section.attrib.get('Label', 'Abstract')}: {section.text}"
for section in abstract_sections
if section.text is not None
)
else:
# Simple abstract
abstract_text = abstract_element.text
else:
abstract_text = ""
if len(abstract_text) > 0:
all_abstracts[pmid] = abstract_text
# Respect NCBI's rate limits
time.sleep(0.34)
except requests.exceptions.RequestException as e:
print(f"Error accessing PubMed API for batch {i//batch_size + 1}: {str(e)}")
continue
except ET.ParseError as e:
print(f"Error parsing PubMed response for batch {i//batch_size + 1}: {str(e)}")
continue
except Exception as e:
print(f"Unexpected error in batch {i//batch_size + 1}: {str(e)}")
continue
print("All abstracts retrieved")
return all_abstracts
def chunk_search(query: str, year_start: int, year_end: int) -> List[str]:
"""
Perform a PubMed search for a specific year range
"""
base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"
retmax = 9999 # Maximum allowed per query
date_query = f"{query} AND {year_start}:{year_end}[dp]"
params = {
"db": "pubmed",
"term": date_query,
"retmax": retmax,
"retmode": "xml"
}
response = requests.get(base_url, params=params)
response.raise_for_status()
root = ET.fromstring(response.content)
id_list = root.findall(".//Id")
return [id_elem.text for id_elem in id_list]
def search_pubmed(query: str, start_year:int, end_year: int) -> Tuple[str, List[str]]:
"""
Search PubMed and return all matching PMIDs by breaking the search into year chunks
"""
base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"
all_pmids = []
yield "Loading current canto dump...", gr.DownloadButton(visible=True, interactive=False)
canto_pmids = fetch_latest_canto_dump().select("pmid").with_columns(pl.col("pmid").str.split(":").list.last())
try:
# First, get the total count
params = {
"db": "pubmed",
"term": query,
"retmax": 0,
"retmode": "xml"
}
response = requests.get(base_url, params=params)
response.raise_for_status()
root = ET.fromstring(response.content)
total_count = int(root.find(".//Count").text)
if total_count == 0:
return "No results found.", gr.DownloadButton(visible=True, interactive=False)
print(total_count)
# Break the search into year chunks
year_chunks = []
chunk_size = 5 # Number of years per chunk
for year in range(start_year, end_year + 1, chunk_size):
chunk_end = min(year + chunk_size - 1, end_year)
year_chunks.append((year, chunk_end))
# Search each year chunk
for start_year, end_year in year_chunks:
current_status = f"Searching years {start_year}-{end_year}..."
yield current_status, gr.DownloadButton(visible=True, interactive=False)
try:
chunk_pmids = chunk_search(query, start_year, end_year)
all_pmids.extend(chunk_pmids)
# Status update
yield f"Retrieved {len(all_pmids)} total results so far...", gr.DownloadButton(visible=True, interactive=False)
# Respect NCBI's rate limits
time.sleep(0.34)
except Exception as e:
print(f"Error processing years {start_year}-{end_year}: {str(e)}")
continue
uncurated_pmid = filter_new_hits(canto_pmids, all_pmids)
final_message = f"Retrieved {len(uncurated_pmid)} uncurated pmids!"
yield final_message, gr.DownloadButton(visible=True, interactive=False)
abstracts = fetch_abstracts_batch(uncurated_pmid)
yield f"Fetched {len(abstracts)} abstracts", gr.DownloadButton(visible=True, interactive=False)
classifications = pl.DataFrame(classify_abstracts(abstracts))
print(classifications)
yield f"Classified {len(abstracts)} abstracts", gr.DownloadButton(visible=True, interactive=False)
classification_date = datetime.today().strftime('%Y%m%d')
csv_filename = f"classified_pmids_{classification_date}.csv"
yield "Write csv file...", gr.DownloadButton(visible=True, value=csv_filename, interactive=True)
classifications.write_csv(csv_filename)
yield final_message, gr.DownloadButton(visible=True, value=csv_filename, interactive=True)
except requests.exceptions.RequestException as e:
return f"Error accessing PubMed API: {str(e)}", all_pmids
except ET.ParseError as e:
return f"Error parsing PubMed response: {str(e)}", all_pmids
except Exception as e:
return f"Unexpected error: {str(e)}", all_pmids
def download_file():
return gr.DownloadButton("Download results", visible=True, interactive=True)
# Create Gradio interface
def create_interface():
with gr.Blocks() as app:
gr.Markdown("## PomBase PubMed PMID Search")
gr.Markdown("Enter a search term to find ALL relevant PubMed articles. Large searches may take several minutes.")
gr.Markdown("We then filter for new pmids, then classify them with a transformer model.")
with gr.Row():
search_input = gr.Textbox(
label="Search Term",
placeholder="Enter search terms...",
lines=1,
value='pombe OR "fission yeast"'
)
search_button = gr.Button("Search")
with gr.Row():
current_year = datetime.now().year + 1
start_year = gr.Slider(label="Start year", minimum=1900, maximum=current_year, value=2020)
end_year = gr.Slider(label="End year", minimum=1900, maximum=current_year, value=current_year)
with gr.Row():
status_output = gr.Textbox(
label="Status",
value="Ready to search..."
)
with gr.Row():
d = gr.DownloadButton("Download results", visible=True, interactive=False)
with gr.Row():
progress=gr.Progress()
d.click(download_file, None, d)
search_button.click(
fn=search_pubmed,
inputs=[search_input, start_year, end_year],
outputs=[status_output, d]
)
return app
# fetch_latest_canto_dump()
app = create_interface()
app.launch()