Spaces:
Sleeping
Sleeping
File size: 11,548 Bytes
fb58829 a34dac3 fb58829 c23cd24 fb58829 c23cd24 fb58829 c23cd24 f051782 c23cd24 f051782 c23cd24 fb58829 a34dac3 fb58829 c23cd24 fb58829 42306ac fb58829 20fccc0 fb58829 c23cd24 fb58829 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
import gradio as gr
import spaces
import polars as pl
from datetime import datetime
from functools import lru_cache
from transformers import pipeline
from typing import Dict
import requests
import xml.etree.ElementTree as ET
import time
from typing import List, Tuple, Dict
label_lookup = {
"LABEL_0": "NOT_CURATEABLE",
"LABEL_1": "CURATEABLE"
}
@spaces.GPU
@lru_cache
def get_pipeline():
print("fetching model and building pipeline")
model_name = "afg1/pombe_curation_fold_0"
pipe = pipeline(model=model_name, task="text-classification")
return pipe
@spaces.GPU
def classify_abstracts(abstracts:Dict[str, str],batch_size=64, progress=gr.Progress()) -> None:
pipe = get_pipeline()
# return classification
results = []
total = len(abstracts)
# Convert dictionary to lists of PMIDs and abstracts, preserving order
pmids = list(abstracts.keys())
abstract_texts = list(abstracts.values())
# Initialize progress bar
progress(0, desc="Starting classification...")
# Process in batches
for i in range(0, total, batch_size):
# Get current batch
batch_abstracts = abstract_texts[i:i + batch_size]
batch_pmids = pmids[i:i + batch_size]
try:
# Classify the batch
classifications = pipe(batch_abstracts)
# Process each result in the batch
for pmid, classification in zip(batch_pmids, classifications):
results.append({
'pmid': pmid,
'classification': label_lookup[classification['label']],
'score': classification['score']
})
# Update progress
progress(min((i + batch_size) / total, 1.0),
desc=f"Classified {min(i + batch_size, total)}/{total} abstracts...")
except Exception as e:
print(f"Error classifying batch starting at index {i}: {str(e)}")
continue
progress(1.0, desc="Classification complete!")
return results
@lru_cache
def fetch_latest_canto_dump() -> pl.DataFrame:
"""
Read the latest pombase canto dump direct from the URL
"""
url = "https://curation.pombase.org/kmr44/canto_pombe_pubs.tsv"
return pl.read_csv(url, separator='\t')
def filter_new_hits(canto_pmcids: pl.DataFrame, new_pmcids: List[str]) -> List[str]:
"""
Convert the list of PMCIDs from the search to a dataframe and do an anti-join to
find new stuff
"""
new_pmids = pl.DataFrame({"pmid": new_pmcids})
uncurated = new_pmids.join(canto_pmcids, on="pmid", how="anti")
return uncurated.get_column("pmid").to_list()
def fetch_abstracts_batch(pmids: List[str], batch_size: int = 200) -> Dict[str, str]:
"""
Fetch abstracts for a list of PMIDs in batches
Args:
pmids (List[str]): List of PMIDs to fetch abstracts for
batch_size (int): Number of PMIDs to process per batch
Returns:
Dict[str, str]: Dictionary mapping PMIDs to their abstracts
"""
base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi"
all_abstracts = {}
# Process PMIDs in batches
for i in range(0, len(pmids), batch_size):
batch_pmids = pmids[i:i + batch_size]
pmids_string = ",".join(batch_pmids)
print(f"Processing batch {i//batch_size + 1} of {(len(pmids) + batch_size - 1)//batch_size}")
params = {
"db": "pubmed",
"id": pmids_string,
"retmode": "xml",
"rettype": "abstract"
}
try:
response = requests.get(base_url, params=params)
response.raise_for_status()
# Parse XML response
root = ET.fromstring(response.content)
# Iterate through each article in the batch
for article in root.findall(".//PubmedArticle"):
# Get PMID
pmid = article.find(".//PMID").text
# Find abstract text
abstract_element = article.find(".//Abstract/AbstractText")
if abstract_element is not None:
# Handle structured abstracts
if 'Label' in abstract_element.attrib:
abstract_sections = article.findall(".//Abstract/AbstractText")
abstract_text = "\n".join(
f"{section.attrib.get('Label', 'Abstract')}: {section.text}"
for section in abstract_sections
if section.text is not None
)
else:
# Simple abstract
abstract_text = abstract_element.text
else:
abstract_text = ""
if len(abstract_text) > 0:
all_abstracts[pmid] = abstract_text
# Respect NCBI's rate limits
time.sleep(0.34)
except requests.exceptions.RequestException as e:
print(f"Error accessing PubMed API for batch {i//batch_size + 1}: {str(e)}")
continue
except ET.ParseError as e:
print(f"Error parsing PubMed response for batch {i//batch_size + 1}: {str(e)}")
continue
except Exception as e:
print(f"Unexpected error in batch {i//batch_size + 1}: {str(e)}")
continue
print("All abstracts retrieved")
return all_abstracts
def chunk_search(query: str, year_start: int, year_end: int) -> List[str]:
"""
Perform a PubMed search for a specific year range
"""
base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"
retmax = 9999 # Maximum allowed per query
date_query = f"{query} AND {year_start}:{year_end}[dp]"
params = {
"db": "pubmed",
"term": date_query,
"retmax": retmax,
"retmode": "xml"
}
response = requests.get(base_url, params=params)
response.raise_for_status()
root = ET.fromstring(response.content)
id_list = root.findall(".//Id")
return [id_elem.text for id_elem in id_list]
def search_pubmed(query: str, start_year:int, end_year: int) -> Tuple[str, List[str]]:
"""
Search PubMed and return all matching PMIDs by breaking the search into year chunks
"""
base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"
all_pmids = []
yield "Loading current canto dump...", gr.DownloadButton(visible=True, interactive=False)
canto_pmids = fetch_latest_canto_dump().select("pmid").with_columns(pl.col("pmid").str.split(":").list.last())
try:
# First, get the total count
params = {
"db": "pubmed",
"term": query,
"retmax": 0,
"retmode": "xml"
}
response = requests.get(base_url, params=params)
response.raise_for_status()
root = ET.fromstring(response.content)
total_count = int(root.find(".//Count").text)
if total_count == 0:
return "No results found.", gr.DownloadButton(visible=True, interactive=False)
print(total_count)
# Break the search into year chunks
year_chunks = []
chunk_size = 5 # Number of years per chunk
for year in range(start_year, end_year + 1, chunk_size):
chunk_end = min(year + chunk_size - 1, end_year)
year_chunks.append((year, chunk_end))
# Search each year chunk
for start_year, end_year in year_chunks:
current_status = f"Searching years {start_year}-{end_year}..."
yield current_status, gr.DownloadButton(visible=True, interactive=False)
try:
chunk_pmids = chunk_search(query, start_year, end_year)
all_pmids.extend(chunk_pmids)
# Status update
yield f"Retrieved {len(all_pmids)} total results so far...", gr.DownloadButton(visible=True, interactive=False)
# Respect NCBI's rate limits
time.sleep(0.34)
except Exception as e:
print(f"Error processing years {start_year}-{end_year}: {str(e)}")
continue
uncurated_pmid = filter_new_hits(canto_pmids, all_pmids)
final_message = f"Retrieved {len(uncurated_pmid)} uncurated pmids!"
yield final_message, gr.DownloadButton(visible=True, interactive=False)
abstracts = fetch_abstracts_batch(uncurated_pmid)
yield f"Fetched {len(abstracts)} abstracts", gr.DownloadButton(visible=True, interactive=False)
classifications = pl.DataFrame(classify_abstracts(abstracts))
print(classifications)
yield f"Classified {len(abstracts)} abstracts", gr.DownloadButton(visible=True, interactive=False)
classification_date = datetime.today().strftime('%Y%m%d')
csv_filename = f"classified_pmids_{classification_date}.csv"
yield "Write csv file...", gr.DownloadButton(visible=True, value=csv_filename, interactive=True)
classifications.write_csv(csv_filename)
yield final_message, gr.DownloadButton(visible=True, value=csv_filename, interactive=True)
except requests.exceptions.RequestException as e:
return f"Error accessing PubMed API: {str(e)}", all_pmids
except ET.ParseError as e:
return f"Error parsing PubMed response: {str(e)}", all_pmids
except Exception as e:
return f"Unexpected error: {str(e)}", all_pmids
def download_file():
return gr.DownloadButton("Download results", visible=True, interactive=True)
# Create Gradio interface
def create_interface():
with gr.Blocks() as app:
gr.Markdown("## PomBase PubMed PMID Search")
gr.Markdown("Enter a search term to find ALL relevant PubMed articles. Large searches may take several minutes.")
gr.Markdown("We then filter for new pmids, then classify them with a transformer model.")
with gr.Row():
search_input = gr.Textbox(
label="Search Term",
placeholder="Enter search terms...",
lines=1,
value='pombe OR "fission yeast"'
)
search_button = gr.Button("Search")
with gr.Row():
current_year = datetime.now().year + 1
start_year = gr.Slider(label="Start year", minimum=1900, maximum=current_year, value=2020)
end_year = gr.Slider(label="End year", minimum=1900, maximum=current_year, value=current_year)
with gr.Row():
status_output = gr.Textbox(
label="Status",
value="Ready to search..."
)
with gr.Row():
d = gr.DownloadButton("Download results", visible=True, interactive=False)
with gr.Row():
progress=gr.Progress()
d.click(download_file, None, d)
search_button.click(
fn=search_pubmed,
inputs=[search_input, start_year, end_year],
outputs=[status_output, d]
)
return app
# fetch_latest_canto_dump()
app = create_interface()
app.launch()
|