from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool, Tool import datetime import requests import pytz import yaml import json from tools.final_answer import FinalAnswerTool from Gradio_UI import GradioUI from smolagents import Tool from epmc_xml import fetch import requests import json class EuropePMCCitationsTool(Tool): name = "europepmc_citation_downloader" description = """ This tool queries the Europe PMC API to retrieve citations for a given PMCID. It returns a list of cited PMCID strings from the citation list. """ inputs = { "pmcid": { "type": "string", "description": "the PMCID to query (e.g., 'PMC7779037')", } } output_type = "array" def forward(self, pmcid: str): url = f"https://www.ebi.ac.uk/europepmc/webservices/rest/PMC/{pmcid}/citations?page=1&pageSize=1000&format=json" headers = { 'Content-Type': 'application/json', } response = requests.get(url, headers=headers) if response.status_code != 200: raise Exception(f"Error querying Europe PMC API: {response.status_code}") data = json.loads(response.text) citations = data.get("citationList", {}).get("citation", []) # Extract PMCID strings from citations pmcid_list = [str(citation.get("id", "")) for citation in citations] return pmcid_list class EuropePMCArticleTextTool(Tool): name = "europepmc_fulltext_downloader" description = """ This is a tool that fetches the full text of an article from Europe PMC. It takes a PMCID (format PMC\d+) as input and returns the full text of the article as a string. Articles can only be fetched if they are open access; returns emptty string if article is not open access. """ inputs = { "pmcid": { "type": "string", "description": "the PMCID of the article to fetch (e.g., 'PMC7779037')", } } output_type = "string" def forward(self, pmcid: str): # Fetch the article using epmc_xml try: article = fetch.article(pmcid) # Extract the full text from the article object full_text = article.get_body() except: full_text = ""#f"The article {pmcid} does not appear to be open access." # Return the full text as a string return full_text class PMID2PMCIDConverter(Tool): name = "pmid_2_pmcid_converter" description = """ This tool converts the pmids (all numbers) to pmcids (format PMC\d+). Use this to convert pmids reported by the citation tool to pmcids needed by the fulltext downloader """ inputs = { "pmid": { "type": "string", "description": "the PMID to query (e.g., '36033386')", } } output_type = "string" def forward(self, pmid): url = f"https://www.ncbi.nlm.nih.gov/pmc/utils/idconv/v1.0?ids={pmid}&versions=no&format=json" headers = { 'Content-Type': 'application/json', } response = requests.get(url, headers=headers) if response.status_code != 200: raise Exception(f"Error querying NCBI API: {response.status_code}") data = json.loads(response.text) pmcid = data.get("records", {})[0].get("pmcid", []) return pmcid @tool def get_current_time_in_timezone(timezone: str) -> str: """A tool that fetches the current local time in a specified timezone. Args: timezone: A string representing a valid timezone (e.g., 'America/New_York'). """ try: # Create timezone object tz = pytz.timezone(timezone) # Get current time in that timezone local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") return f"The current local time in {timezone} is: {local_time}" except Exception as e: return f"Error fetching time for timezone '{timezone}': {str(e)}" final_answer = FinalAnswerTool() citationtool = EuropePMCCitationsTool() fulltexttool = EuropePMCArticleTextTool() convert_id_tool = PMID2PMCIDConverter() # If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: # model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' model = HfApiModel( max_tokens=2096, temperature=0.5, model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-32B',# it is possible that this model may be overloaded custom_role_conversions=None, ) # Import tool from Hub image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) with open("prompts.yaml", 'r') as stream: prompt_templates = yaml.safe_load(stream) agent = CodeAgent( model=model, tools=[final_answer, citationtool, fulltexttool, convert_id_tool], ## add your tools here (don't remove final answer) max_steps=6, verbosity_level=1, grammar=None, planning_interval=None, name=None, description=None, prompt_templates=prompt_templates ) GradioUI(agent).launch()