Spaces:
Sleeping
Sleeping
File size: 5,248 Bytes
052b1a1 9b5b26a c19d193 052b1a1 6aae614 8fe992b 9b5b26a 052b1a1 9b5b26a 052b1a1 9b5b26a 8c01ffb 6aae614 ae7a494 052b1a1 ae7a494 e121372 bf6d34c a92b8b9 fe328e0 13d500a 8c01ffb 9b5b26a 8c01ffb 861422e 9b5b26a 8c01ffb 8fe992b 052b1a1 8c01ffb 861422e 8fe992b 9b5b26a 8c01ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool, Tool
import datetime
import requests
import pytz
import yaml
import json
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI
from smolagents import Tool
from epmc_xml import fetch
import requests
import json
class EuropePMCCitationsTool(Tool):
name = "europepmc_citation_downloader"
description = """
This tool queries the Europe PMC API to retrieve citations for a given PMCID.
It returns a list of cited PMCID strings from the citation list.
"""
inputs = {
"pmcid": {
"type": "string",
"description": "the PMCID to query (e.g., 'PMC7779037')",
}
}
output_type = "array"
def forward(self, pmcid: str):
url = f"https://www.ebi.ac.uk/europepmc/webservices/rest/PMC/{pmcid}/citations?page=1&pageSize=1000&format=json"
headers = {
'Content-Type': 'application/json',
}
response = requests.get(url, headers=headers)
if response.status_code != 200:
raise Exception(f"Error querying Europe PMC API: {response.status_code}")
data = json.loads(response.text)
citations = data.get("citationList", {}).get("citation", [])
# Extract PMCID strings from citations
pmcid_list = [str(citation.get("id", "")) for citation in citations]
return pmcid_list
class EuropePMCArticleTextTool(Tool):
name = "europepmc_fulltext_downloader"
description = """
This is a tool that fetches the full text of an article from Europe PMC.
It takes a PMCID (format PMC\d+) as input and returns the full text of the article as a string.
Articles can only be fetched if they are open access; returns emptty string if article is not open access.
"""
inputs = {
"pmcid": {
"type": "string",
"description": "the PMCID of the article to fetch (e.g., 'PMC7779037')",
}
}
output_type = "string"
def forward(self, pmcid: str):
# Fetch the article using epmc_xml
try:
article = fetch.article(pmcid)
# Extract the full text from the article object
full_text = article.get_body()
except:
full_text = ""#f"The article {pmcid} does not appear to be open access."
# Return the full text as a string
return full_text
class PMID2PMCIDConverter(Tool):
name = "pmid_2_pmcid_converter"
description = """
This tool converts the pmids (all numbers) to pmcids (format PMC\d+).
Use this to convert pmids reported by the citation tool to pmcids needed by the fulltext downloader
"""
inputs = {
"pmid": {
"type": "string",
"description": "the PMID to query (e.g., '36033386')",
}
}
output_type = "string"
def forward(self, pmid):
url = f"https://www.ncbi.nlm.nih.gov/pmc/utils/idconv/v1.0?ids={pmid}&versions=no&format=json"
headers = {
'Content-Type': 'application/json',
}
response = requests.get(url, headers=headers)
if response.status_code != 200:
raise Exception(f"Error querying NCBI API: {response.status_code}")
data = json.loads(response.text)
pmcid = data.get("records", {})[0].get("pmcid", [])
return pmcid
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
final_answer = FinalAnswerTool()
citationtool = EuropePMCCitationsTool()
fulltexttool = EuropePMCArticleTextTool()
convert_id_tool = PMID2PMCIDConverter()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-32B',# it is possible that this model may be overloaded
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[final_answer, citationtool, fulltexttool, convert_id_tool], ## add your tools here (don't remove final answer)
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch() |