File size: 5,248 Bytes
052b1a1
9b5b26a
 
 
c19d193
052b1a1
6aae614
8fe992b
9b5b26a
 
052b1a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b5b26a
052b1a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
6aae614
ae7a494
052b1a1
 
 
 
ae7a494
 
 
e121372
bf6d34c
 
a92b8b9
fe328e0
13d500a
8c01ffb
 
9b5b26a
 
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
052b1a1
8c01ffb
 
 
 
 
 
861422e
8fe992b
 
9b5b26a
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool, Tool
import datetime
import requests
import pytz
import yaml
import json
from tools.final_answer import FinalAnswerTool

from Gradio_UI import GradioUI

from smolagents import Tool
from epmc_xml import fetch
import requests
import json

class EuropePMCCitationsTool(Tool):
    name = "europepmc_citation_downloader"
    description = """
    This tool queries the Europe PMC API to retrieve citations for a given PMCID.
    It returns a list of cited PMCID strings from the citation list.
    """
    inputs = {
        "pmcid": {
            "type": "string",
            "description": "the PMCID to query (e.g., 'PMC7779037')",
        }
    }
    output_type = "array"

    def forward(self, pmcid: str):
        url = f"https://www.ebi.ac.uk/europepmc/webservices/rest/PMC/{pmcid}/citations?page=1&pageSize=1000&format=json"
        
        headers = {
            'Content-Type': 'application/json',
        }
        
        response = requests.get(url, headers=headers)
        if response.status_code != 200:
            raise Exception(f"Error querying Europe PMC API: {response.status_code}")
        
        data = json.loads(response.text)
        citations = data.get("citationList", {}).get("citation", [])
        
        # Extract PMCID strings from citations
        pmcid_list = [str(citation.get("id", "")) for citation in citations]
        
        return pmcid_list


class EuropePMCArticleTextTool(Tool):
    name = "europepmc_fulltext_downloader"
    description = """
    This is a tool that fetches the full text of an article from Europe PMC.
    It takes a PMCID (format PMC\d+) as input and returns the full text of the article as a string.
    Articles can only be fetched if they are open access; returns emptty string if article is not open access.
    """
    inputs = {
        "pmcid": {
            "type": "string",
            "description": "the PMCID of the article to fetch (e.g., 'PMC7779037')",
        }
    }
    output_type = "string"

    def forward(self, pmcid: str):
        # Fetch the article using epmc_xml
        try:
            article = fetch.article(pmcid)
        
            # Extract the full text from the article object
            full_text = article.get_body()
        except:
            full_text = ""#f"The article {pmcid} does not appear to be open access."
        
        
        # Return the full text as a string
        return full_text


class PMID2PMCIDConverter(Tool):
    name = "pmid_2_pmcid_converter"
    description = """
    This tool converts the pmids (all numbers) to pmcids (format PMC\d+).
    Use this to convert pmids reported by the citation tool to pmcids needed by the fulltext downloader
    """
    inputs = {
        "pmid": {
            "type": "string",
            "description": "the PMID to query (e.g., '36033386')",
        }
    }
    output_type = "string"

    def forward(self, pmid):
        url = f"https://www.ncbi.nlm.nih.gov/pmc/utils/idconv/v1.0?ids={pmid}&versions=no&format=json"

        headers = {
            'Content-Type': 'application/json',
        }
        
        response = requests.get(url, headers=headers)
        if response.status_code != 200:
            raise Exception(f"Error querying NCBI API: {response.status_code}")
        
        data = json.loads(response.text)    
        pmcid = data.get("records", {})[0].get("pmcid", [])
        
        return pmcid


@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()

citationtool = EuropePMCCitationsTool()
fulltexttool = EuropePMCArticleTextTool()
convert_id_tool = PMID2PMCIDConverter()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 

model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='deepseek-ai/DeepSeek-R1-Distill-Qwen-32B',# it is possible that this model may be overloaded
custom_role_conversions=None,
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[final_answer, citationtool, fulltexttool, convert_id_tool], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()