File size: 17,700 Bytes
550ed76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
# AI SBOM Generator System Architecture

## Overview

The AI SBOM Generator is a configurable system that automatically generates Software Bill of Materials (SBOM) documents for AI models hosted on HuggingFace. The system uses a registry-driven architecture that allows for dynamic field configuration without code changes.

## System Architecture

### Core Components

```
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    AI SBOM Generator                   β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  Web Interface (FastAPI + HTML Templates)              β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  API Layer                                             β”‚
β”‚  β”œβ”€β”€ Generation Endpoints                              β”‚
β”‚  β”œβ”€β”€ Scoring Endpoints                                 β”‚
β”‚  └── Batch Processing                                  β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  Core Generation Engine                                β”‚
β”‚  β”œβ”€β”€ AIBOMGenerator (generator.py)                     β”‚
β”‚  β”œβ”€β”€ Enhanced Extractor (enhanced_extractor.py)        β”‚
β”‚  └── Field Registry Manager (field_registry_manager.py)β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  Configuration Layer                                   β”‚
β”‚  β”œβ”€β”€ Field Registry (field_registry.json)              β”‚
β”‚  β”œβ”€β”€ Scoring Configuration                             β”‚
β”‚  └── AIBOM Generation Rules                            β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  Data Sources                                          β”‚
β”‚  β”œβ”€β”€ HuggingFace API                                   β”‚
β”‚  β”œβ”€β”€ Model Cards                                       β”‚
β”‚  β”œβ”€β”€ Configuration Files                               β”‚
β”‚  └── README Content                                    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
```

### Key Features

- **Registry-Driven Configuration**: All fields and scoring rules defined in JSON
- **Multi-Strategy Extraction**: 6 different extraction methods per field
- **Standards Compliance**: CycloneDX 1.6 compatible output
- **Configurable Scoring**: Weighted scoring system with tier-based multipliers
- **Automatic Field Discovery**: New fields added to registry are automatically processed
- **Comprehensive Logging**: Detailed extraction and scoring logs for debugging

## Process Workflow

### 1. System Initialization

```
System Initialization Process:

    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚  System Startup  β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
              β”‚
              β–Ό
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚ Load Field       β”‚
    β”‚ Registry         β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
              β”‚
              β–Ό
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚ Initialize       β”‚
    β”‚ Registry Manager β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
              β”‚
              β–Ό
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚ Load Scoring   β”‚
    β”‚ Configuration  β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜
              β”‚
              β–Ό
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚ Initialize     β”‚
    β”‚ Enhanced       β”‚
    β”‚ Extractor      β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜
              β”‚
              β–Ό
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚  System Ready  β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
```

**Steps:**
1. **Load Field Registry**: Read `field_registry.json` containing all field definitions
2. **Initialize Registry Manager**: Create manager instance with loaded configuration
3. **Load Scoring Configuration**: Parse scoring weights, tiers, and category definitions
4. **Initialize Enhanced Extractor**: Create extractor with registry-driven field discovery
5. **System Ready**: All components initialized and ready for SBOM generation

### 2. SBOM Generation Process

```
SBOM Generation Workflow:

User Request ──┐
               β”‚
               β–Ό
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚ Validate Model  │─────▢│ Fetch Model Info  │───▢│ Initialize      β”‚
    β”‚ ID              β”‚      β”‚                   β”‚    β”‚ Enhanced        β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜      β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β”‚ Extractor       β”‚
                                                      β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜
                                                                β”‚
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                 β”‚
    β”‚ Return SBOM +    │◀───│ Calculate       β”‚β—€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
    β”‚ Score            β”‚    β”‚ Completeness    β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β”‚ Score           β”‚
                            β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                    β–²
                                    β”‚
                           β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                           β”‚ Generate AIBOM    β”‚
                           β”‚ Structure         β”‚
                           β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                    β–²
                                    β”‚
                           β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                           β”‚ Multi-Strategy    β”‚
                           β”‚ Field Processing  β”‚
                           β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                    β–²
                                    β”‚
                           β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                           β”‚ Registry-Driven   β”‚
                           β”‚ Extraction        β”‚
                           β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
```

#### 2.1 Model Information Gathering

**Input**: HuggingFace model ID (e.g., `deepseek-ai/DeepSeek-R1`)

**Process**:
1. **Validate Model ID**: Check format and accessibility
2. **Fetch Model Info**: Retrieve metadata from HuggingFace API
3. **Download Model Card**: Get structured model documentation
4. **Fetch Configuration Files**: Download `config.json`, `tokenizer_config.json`
5. **Extract README Content**: Parse model description and documentation

#### 2.2 Registry-Driven Field Extraction

**For each of the 29 registry fields:**

```
Multi-Strategy Field Extraction:

Field from Registry
        β”‚
        β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     Success?
β”‚ Strategy 1:      │────────┐
β”‚ HuggingFace API  β”‚        β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜        β”‚
        β”‚                  β”‚
        β”‚ Failure          β”‚
        β–Ό                  β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”        β”‚
β”‚ Strategy 2:      β”‚        β”‚
β”‚ Model Card       β”‚        β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜        β”‚
        β”‚                  β”‚
        β”‚ Failure          β”‚
        β–Ό                  β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”        β”‚
β”‚ Strategy 3:      β”‚        β”‚
β”‚ Config Files     β”‚        β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜        β”‚
        β”‚                  β”‚
        β”‚ Failure          β”‚
        β–Ό                  β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”        β”‚
β”‚ Strategy 4:      β”‚        β”‚
β”‚ Text Patterns    β”‚        β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜        β”‚
        β”‚                  β”‚
        β”‚ Failure          β”‚
        β–Ό                  β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”        β”‚
β”‚ Strategy 5:      β”‚        β”‚
β”‚ Intelligent      β”‚        β”‚
β”‚ Inference        β”‚        β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜        β”‚
        β”‚                  β”‚
        β”‚ Failure          β”‚
        β–Ό                  β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”        β”‚
β”‚ Strategy 6:      β”‚        β”‚
β”‚ Fallback Value   β”‚        β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜        β”‚
        β”‚                  β”‚
        β–Ό                  β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”β—€β”€β”€β”€β”€β”€β”€β”€β”˜
β”‚ Store Result &   β”‚
β”‚ Log Outcome      β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
```

**Extraction Strategies**:

1. **HuggingFace API Extraction**
   - Direct field mapping from API response
   - High confidence, structured data
   - Fields: `name`, `author`, `license`, `tags`, etc.

2. **Model Card Extraction**
   - Parse structured model card YAML/metadata
   - Medium-high confidence
   - Fields: `limitation`, `metrics`, `datasets`, etc.

3. **Configuration File Extraction**
   - Mine technical details from config files
   - High confidence for technical fields
   - Fields: `typeOfModel`, `hyperparameter`, etc.

4. **Text Pattern Extraction**
   - Regex-based extraction from README content
   - Medium confidence, requires validation
   - Fields: `safetyRiskAssessment`, `informationAboutTraining`, etc.

5. **Intelligent Inference**
   - Smart defaults based on model characteristics
   - Medium confidence, contextual
   - Fields: `primaryPurpose`, `domain`, etc.

6. **Fallback Values**
   - Placeholder values when no data available
   - Low/no confidence, maintains structure
   - Ensures complete SBOM structure

#### 2.3 AIBOM Structure Generation

**Process**:
1. **Create Base Structure**: Initialize CycloneDX 1.6 compliant structure
2. **Populate Metadata Section**: Add extracted metadata fields
3. **Build Component Section**: Create model component with extracted data
4. **Add Model Card**: Include AI-specific model card information
5. **Generate External References**: Add distribution and repository links
6. **Create Dependencies**: Define model dependencies and relationships
7. **Validate Structure**: Ensure CycloneDX compliance

**Output Structure**:
```json
{
  "bomFormat": "CycloneDX",
  "specVersion": "1.6",
  "serialNumber": "urn:uuid:...",
  "version": 1,
  "metadata": {
    "timestamp": "...",
    "tools": [...],
    "component": {...},
    "properties": [...]
  },
  "components": [{
    "type": "machine-learning-model",
    "name": "...",
    "modelCard": {...},
    "properties": [...]
  }],
  "externalReferences": [...],
  "dependencies": [...]
}
```

### 3. Completeness Scoring Process

```
Completeness Scoring Process:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Extracted Fields β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
          β”‚
          β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Categorize       β”‚
β”‚ Fields           β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
          β”‚
          β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Apply Tier       β”‚
β”‚ Weights          β”‚
β”‚ β€’ Critical: 3x   β”‚
β”‚ β€’ Important: 2x  β”‚
β”‚ β€’ Supplement: 1x β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
          β”‚
          β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Calculate        β”‚
β”‚ Category Scores  β”‚
β”‚ β€’ Required: 20   β”‚
β”‚ β€’ Metadata: 20   β”‚
β”‚ β€’ Basic: 20      β”‚
β”‚ β€’ ModelCard: 30  β”‚
β”‚ β€’ ExtRefs: 10    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
          β”‚
          β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Sum Weighted     β”‚
β”‚ Scores           β”‚
β”‚ (Max: 100)       β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
          β”‚
          β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Generate Score   β”‚
β”‚ Report           β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
```

**Scoring Algorithm**:

1. **Field Categorization**: Group fields by category (required_fields, metadata, etc.)
2. **Tier Weight Application**: Apply multipliers (Critical: 3x, Important: 2x, Supplementary: 1x)
3. **Category Score Calculation**: `(Fields Present / Total Fields) Γ— Category Weight`
4. **Final Score**: Sum of all category scores (max 100)

**Category Weights**:
- Required Fields: 20 points
- Metadata: 20 points  
- Component Basic: 20 points
- Component Model Card: 30 points
- External References: 10 points

### 4. Output Generation

**Generated Artifacts**:
1. **AIBOM JSON**: CycloneDX 1.6 compliant SBOM document
2. **Completeness Score**: Numerical score (0-100) with breakdown
3. **Field Checklist**: Detailed field-by-field analysis
4. **Extraction Report**: Confidence levels and data sources
5. **Validation Results**: Compliance and quality checks

## Configuration Management

### Field Registry Structure

The system is driven by `field_registry.json` which defines:

- **Field Definitions**: All 29 extractable fields
- **Scoring Configuration**: Weights, tiers, and categories
- **AIBOM Generation Rules**: Structure and validation rules
- **Extraction Strategies**: How each field should be extracted

### Dynamic Configuration

**Adding New Fields**:
1. Add field definition to `field_registry.json`
2. System automatically discovers and attempts extraction
3. No code changes required

**Updating Scoring**:
1. Modify weights in registry configuration
2. Changes take effect immediately
3. Consistent scoring across all models

## Quality Assurance

### Validation Layers

1. **Input Validation**: Model ID format and accessibility
2. **Extraction Validation**: Data type and format checking
3. **Structure Validation**: CycloneDX schema compliance
4. **Scoring Validation**: Mathematical correctness
5. **Output Validation**: JSON schema and completeness

### Error Handling

- **Individual Field Failures**: Don't stop overall processing
- **Graceful Degradation**: Fallback to lower-confidence strategies
- **Comprehensive Logging**: Detailed error tracking and debugging
- **Recovery Mechanisms**: Automatic retry and alternative approaches

## Performance Characteristics

### Typical Processing Times

- **Single Model**: 2-5 seconds
- **Batch Processing**: 10-50 models/minute
- **Registry Loading**: <1 second
- **Field Extraction**: 1-3 seconds per model

### Scalability Features

- **Concurrent Processing**: Multiple models processed simultaneously
- **Caching**: Model metadata and configuration caching
- **Rate Limiting**: Respectful API usage
- **Resource Management**: Memory and connection pooling

## Integration Points

### APIs

- **Generation API**: `/api/generate` - Single model AI SBOM generation, with download URL
- **Generation with Completness Score Report API**: `/api/generate-with-report` - Generation API with completness scoring report
- **Completness Score Report Only API**: `/api/models/{model_id}/score` - Get the completeness score for a model without generating AI SBOM

### Data Sources

- **HuggingFace Hub**: Primary model metadata source
- **Model Repositories**: Direct file access for configurations
- **Model Cards**: Structured documentation parsing

### Output Formats

- **CycloneDX JSON**: Primary SBOM format
- **Field Reports**: Human-readable analysis
- **CSV Exports**: Batch processing results
- **API Responses**: Structured JSON for integration

This architecture provides a robust, configurable, and standards-compliant solution for AI model SBOM generation with comprehensive field extraction and scoring capabilities.