Spaces:
Runtime error
Runtime error
| using json = nlohmann::ordered_json; | |
| // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11 | |
| enum error_type { | |
| ERROR_TYPE_INVALID_REQUEST, | |
| ERROR_TYPE_AUTHENTICATION, | |
| ERROR_TYPE_SERVER, | |
| ERROR_TYPE_NOT_FOUND, | |
| ERROR_TYPE_PERMISSION, | |
| ERROR_TYPE_UNAVAILABLE, // custom error | |
| ERROR_TYPE_NOT_SUPPORTED, // custom error | |
| }; | |
| extern bool server_verbose; | |
| extern bool server_log_json; | |
| static inline void server_log(const char *level, const char *function, int line, const char *message, const nlohmann::ordered_json &extra); | |
| template <typename T> | |
| static T json_value(const json &body, const std::string &key, const T &default_value) { | |
| // Fallback null to default value | |
| if (body.contains(key) && !body.at(key).is_null()){ | |
| try { | |
| return body.value(key, default_value); | |
| } | |
| catch (nlohmann::json_abi_v3_11_3::detail::type_error const&){ | |
| std::string message = "Wrong type supplied for parameter '" + key + "'. Expected '" + typeid(default_value).name() + "', using default value."; | |
| server_log("WARN", __func__, __LINE__, message.c_str(), body); | |
| return default_value; | |
| } | |
| } else { | |
| return default_value; | |
| } | |
| } | |
| static inline void server_log(const char *level, const char *function, int line, const char *message, const nlohmann::ordered_json &extra) { | |
| std::stringstream ss_tid; | |
| ss_tid << std::this_thread::get_id(); | |
| json log = nlohmann::ordered_json{ | |
| {"tid", ss_tid.str()}, | |
| {"timestamp", time(nullptr)}, | |
| }; | |
| if (server_log_json) { | |
| log.merge_patch( { | |
| {"level", level}, | |
| {"function", function}, | |
| {"line", line}, | |
| {"msg", message}, | |
| }); | |
| if (!extra.empty()) { | |
| log.merge_patch(extra); | |
| } | |
| printf("%s\n", log.dump(-1, ' ', false, json::error_handler_t::replace).c_str()); | |
| } else { | |
| char buf[1024]; | |
| snprintf(buf, 1024, "%4s [%24s] %s", level, function, message); | |
| if (!extra.empty()) { | |
| log.merge_patch(extra); | |
| } | |
| std::stringstream ss; | |
| ss << buf << " |"; | |
| for (const auto& el : log.items()) | |
| { | |
| const std::string value = el.value().dump(-1, ' ', false, json::error_handler_t::replace); | |
| ss << " " << el.key() << "=" << value; | |
| } | |
| const std::string str = ss.str(); | |
| printf("%.*s\n", (int)str.size(), str.data()); | |
| } | |
| fflush(stdout); | |
| } | |
| // | |
| // chat template utils | |
| // | |
| // Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid | |
| inline bool verify_custom_template(const std::string & tmpl) { | |
| llama_chat_message chat[] = {{"user", "test"}}; | |
| int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0); | |
| return res >= 0; | |
| } | |
| // Format given chat. If tmpl is empty, we take the template from model metadata | |
| inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages) { | |
| size_t alloc_size = 0; | |
| // vector holding all allocated string to be passed to llama_chat_apply_template | |
| std::vector<std::string> str(messages.size() * 2); | |
| std::vector<llama_chat_message> chat(messages.size()); | |
| for (size_t i = 0; i < messages.size(); ++i) { | |
| const auto & curr_msg = messages[i]; | |
| str[i*2 + 0] = json_value(curr_msg, "role", std::string("")); | |
| str[i*2 + 1] = json_value(curr_msg, "content", std::string("")); | |
| alloc_size += str[i*2 + 1].length(); | |
| chat[i].role = str[i*2 + 0].c_str(); | |
| chat[i].content = str[i*2 + 1].c_str(); | |
| } | |
| const char * ptr_tmpl = tmpl.empty() ? nullptr : tmpl.c_str(); | |
| std::vector<char> buf(alloc_size * 2); | |
| // run the first time to get the total output length | |
| int32_t res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size()); | |
| // if it turns out that our buffer is too small, we resize it | |
| if ((size_t) res > buf.size()) { | |
| buf.resize(res); | |
| res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size()); | |
| } | |
| const std::string formatted_chat(buf.data(), res); | |
| LOG_VERBOSE("formatted_chat", {{"text", formatted_chat.c_str()}}); | |
| return formatted_chat; | |
| } | |
| // | |
| // base64 utils (TODO: move to common in the future) | |
| // | |
| static const std::string base64_chars = | |
| "ABCDEFGHIJKLMNOPQRSTUVWXYZ" | |
| "abcdefghijklmnopqrstuvwxyz" | |
| "0123456789+/"; | |
| static inline bool is_base64(uint8_t c) { | |
| return (isalnum(c) || (c == '+') || (c == '/')); | |
| } | |
| static inline std::vector<uint8_t> base64_decode(const std::string & encoded_string) { | |
| int i = 0; | |
| int j = 0; | |
| int in_ = 0; | |
| int in_len = encoded_string.size(); | |
| uint8_t char_array_4[4]; | |
| uint8_t char_array_3[3]; | |
| std::vector<uint8_t> ret; | |
| while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) { | |
| char_array_4[i++] = encoded_string[in_]; in_++; | |
| if (i == 4) { | |
| for (i = 0; i < 4; i++) { | |
| char_array_4[i] = base64_chars.find(char_array_4[i]); | |
| } | |
| char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4); | |
| char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2); | |
| char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3]; | |
| for (i = 0; (i < 3); i++) { | |
| ret.push_back(char_array_3[i]); | |
| } | |
| i = 0; | |
| } | |
| } | |
| if (i) { | |
| for (j = i; j < 4; j++) { | |
| char_array_4[j] = 0; | |
| } | |
| for (j = 0; j < 4; j++) { | |
| char_array_4[j] = base64_chars.find(char_array_4[j]); | |
| } | |
| char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4); | |
| char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2); | |
| char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3]; | |
| for (j = 0; j < i - 1; j++) { | |
| ret.push_back(char_array_3[j]); | |
| } | |
| } | |
| return ret; | |
| } | |
| // | |
| // random string / id | |
| // | |
| static std::string random_string() { | |
| static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"); | |
| std::random_device rd; | |
| std::mt19937 generator(rd()); | |
| std::string result(32, ' '); | |
| for (int i = 0; i < 32; ++i) { | |
| result[i] = str[generator() % str.size()]; | |
| } | |
| return result; | |
| } | |
| static std::string gen_chatcmplid() { | |
| std::stringstream chatcmplid; | |
| chatcmplid << "chatcmpl-" << random_string(); | |
| return chatcmplid.str(); | |
| } | |
| // | |
| // other common utils | |
| // | |
| static size_t common_part(const std::vector<llama_token> & a, const std::vector<llama_token> & b) { | |
| size_t i; | |
| for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {} | |
| return i; | |
| } | |
| static bool ends_with(const std::string & str, const std::string & suffix) { | |
| return str.size() >= suffix.size() && 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix); | |
| } | |
| static size_t find_partial_stop_string(const std::string &stop, const std::string &text) { | |
| if (!text.empty() && !stop.empty()) { | |
| const char text_last_char = text.back(); | |
| for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) { | |
| if (stop[char_index] == text_last_char) { | |
| const std::string current_partial = stop.substr(0, char_index + 1); | |
| if (ends_with(text, current_partial)) { | |
| return text.size() - char_index - 1; | |
| } | |
| } | |
| } | |
| } | |
| return std::string::npos; | |
| } | |
| // TODO: reuse llama_detokenize | |
| template <class Iter> | |
| static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) { | |
| std::string ret; | |
| for (; begin != end; ++begin) { | |
| ret += llama_token_to_piece(ctx, *begin); | |
| } | |
| return ret; | |
| } | |
| // format incomplete utf-8 multibyte character for output | |
| static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) { | |
| std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token); | |
| // if the size is 1 and first bit is 1, meaning it's a partial character | |
| // (size > 1 meaning it's already a known token) | |
| if (out.size() == 1 && (out[0] & 0x80) == 0x80) { | |
| std::stringstream ss; | |
| ss << std::hex << (out[0] & 0xff); | |
| std::string res(ss.str()); | |
| out = "byte: \\x" + res; | |
| } | |
| return out; | |
| } | |
| struct completion_token_output { | |
| llama_token tok; | |
| std::string text_to_send; | |
| struct token_prob { | |
| llama_token tok; | |
| float prob; | |
| }; | |
| std::vector<token_prob> probs; | |
| }; | |
| // convert a vector of completion_token_output to json | |
| static json probs_vector_to_json(const llama_context * ctx, const std::vector<completion_token_output> & probs) { | |
| json out = json::array(); | |
| for (const auto & prob : probs) { | |
| json probs_for_token = json::array(); | |
| for (const auto & p : prob.probs) { | |
| const std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok); | |
| probs_for_token.push_back(json { | |
| {"tok_str", tok_str}, | |
| {"prob", p.prob}, | |
| }); | |
| } | |
| const std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok); | |
| out.push_back(json { | |
| {"content", tok_str}, | |
| {"probs", probs_for_token}, | |
| }); | |
| } | |
| return out; | |
| } | |
| // | |
| // OAI utils | |
| // | |
| static json oaicompat_completion_params_parse( | |
| const struct llama_model * model, | |
| const json & body, /* openai api json semantics */ | |
| const std::string & chat_template) { | |
| json llama_params; | |
| llama_params["__oaicompat"] = true; | |
| // Map OpenAI parameters to llama.cpp parameters | |
| // | |
| // For parameters that are defined by the OpenAI documentation (e.g. | |
| // temperature), we explicitly specify OpenAI's intended default; we | |
| // need to do that because sometimes OpenAI disagrees with llama.cpp | |
| // | |
| // https://platform.openai.com/docs/api-reference/chat/create | |
| llama_sampling_params default_sparams; | |
| llama_params["model"] = json_value(body, "model", std::string("unknown")); | |
| llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0); | |
| llama_params["logit_bias"] = json_value(body, "logit_bias", json::object()); | |
| llama_params["n_predict"] = json_value(body, "max_tokens", -1); | |
| llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0); | |
| llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED); | |
| llama_params["stream"] = json_value(body, "stream", false); | |
| llama_params["temperature"] = json_value(body, "temperature", 0.0); | |
| llama_params["top_p"] = json_value(body, "top_p", 1.0); | |
| // Apply chat template to the list of messages | |
| llama_params["prompt"] = format_chat(model, chat_template, body["messages"]); | |
| // Handle "stop" field | |
| if (body.contains("stop") && body["stop"].is_string()) { | |
| llama_params["stop"] = json::array({body["stop"].get<std::string>()}); | |
| } else { | |
| llama_params["stop"] = json_value(body, "stop", json::array()); | |
| } | |
| // Handle "response_format" field | |
| if (body.contains("response_format")) { | |
| json response_format = json_value(body, "response_format", json::object()); | |
| std::string response_type = json_value(response_format, "type", std::string()); | |
| if (response_type == "json_object") { | |
| llama_params["json_schema"] = json_value(response_format, "schema", json::object()); | |
| } else if (!response_type.empty() && response_type != "text") { | |
| throw std::runtime_error("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type); | |
| } | |
| } | |
| // Handle "n" field | |
| int n_choices = json_value(body, "n", 1); | |
| if (n_choices != 1) { | |
| throw std::runtime_error("Only one completion choice is allowed"); | |
| } | |
| // Handle "logprobs" field | |
| // TODO: The response format of this option is not yet OAI-compatible, but seems like no one really using it; We may need to fix it in the future | |
| if (body.contains("logprobs")) { | |
| llama_params["n_probs"] = json_value(body, "top_logprobs", 20); | |
| } else if (body.contains("top_logprobs")) { | |
| throw std::runtime_error("top_logprobs requires logprobs to be set to true"); | |
| } | |
| // Params supported by OAI but unsupported by llama.cpp | |
| static const std::vector<std::string> unsupported_params { "tools", "tool_choice" }; | |
| for (auto & param : unsupported_params) { | |
| if (body.contains(param)) { | |
| throw std::runtime_error("Unsupported param: " + param); | |
| } | |
| } | |
| // Copy remaining properties to llama_params | |
| // This allows user to use llama.cpp-specific params like "mirostat", "tfs_z",... via OAI endpoint. | |
| // See "launch_slot_with_task()" for a complete list of params supported by llama.cpp | |
| for (const auto & item : body.items()) { | |
| // Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens" | |
| if (!llama_params.contains(item.key()) || item.key() == "n_predict") { | |
| llama_params[item.key()] = item.value(); | |
| } | |
| } | |
| return llama_params; | |
| } | |
| static json format_final_response_oaicompat(const json & request, json result, const std::string & completion_id, bool streaming = false) { | |
| bool stopped_word = result.count("stopped_word") != 0; | |
| bool stopped_eos = json_value(result, "stopped_eos", false); | |
| int num_tokens_predicted = json_value(result, "tokens_predicted", 0); | |
| int num_prompt_tokens = json_value(result, "tokens_evaluated", 0); | |
| std::string content = json_value(result, "content", std::string("")); | |
| std::string finish_reason = "length"; | |
| if (stopped_word || stopped_eos) { | |
| finish_reason = "stop"; | |
| } | |
| json choices = | |
| streaming ? json::array({json{{"finish_reason", finish_reason}, | |
| {"index", 0}, | |
| {"delta", json::object()}}}) | |
| : json::array({json{{"finish_reason", finish_reason}, | |
| {"index", 0}, | |
| {"message", json{{"content", content}, | |
| {"role", "assistant"}}}}}); | |
| std::time_t t = std::time(0); | |
| json res = json { | |
| {"choices", choices}, | |
| {"created", t}, | |
| {"model", | |
| json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))}, | |
| {"object", streaming ? "chat.completion.chunk" : "chat.completion"}, | |
| {"usage", json { | |
| {"completion_tokens", num_tokens_predicted}, | |
| {"prompt_tokens", num_prompt_tokens}, | |
| {"total_tokens", num_tokens_predicted + num_prompt_tokens} | |
| }}, | |
| {"id", completion_id} | |
| }; | |
| if (server_verbose) { | |
| res["__verbose"] = result; | |
| } | |
| if (result.contains("completion_probabilities")) { | |
| res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array()); | |
| } | |
| return res; | |
| } | |
| // return value is vector as there is one case where we might need to generate two responses | |
| static std::vector<json> format_partial_response_oaicompat(json result, const std::string & completion_id) { | |
| if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) { | |
| return std::vector<json>({result}); | |
| } | |
| bool first = json_value(result, "oaicompat_token_ctr", 0) == 0; | |
| std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL)); | |
| bool stopped_word = json_value(result, "stopped_word", false); | |
| bool stopped_eos = json_value(result, "stopped_eos", false); | |
| bool stopped_limit = json_value(result, "stopped_limit", false); | |
| std::string content = json_value(result, "content", std::string("")); | |
| std::string finish_reason; | |
| if (stopped_word || stopped_eos) { | |
| finish_reason = "stop"; | |
| } | |
| if (stopped_limit) { | |
| finish_reason = "length"; | |
| } | |
| std::time_t t = std::time(0); | |
| json choices; | |
| if (!finish_reason.empty()) { | |
| choices = json::array({json{{"finish_reason", finish_reason}, | |
| {"index", 0}, | |
| {"delta", json::object()}}}); | |
| } else { | |
| if (first) { | |
| if (content.empty()) { | |
| choices = json::array({json{{"finish_reason", nullptr}, | |
| {"index", 0}, | |
| {"delta", json{{"role", "assistant"}}}}}); | |
| } else { | |
| // We have to send this as two updates to conform to openai behavior | |
| json initial_ret = json{{"choices", json::array({json{ | |
| {"finish_reason", nullptr}, | |
| {"index", 0}, | |
| {"delta", json{ | |
| {"role", "assistant"} | |
| }}}})}, | |
| {"created", t}, | |
| {"id", completion_id}, | |
| {"model", modelname}, | |
| {"object", "chat.completion.chunk"}}; | |
| json second_ret = json{ | |
| {"choices", json::array({json{{"finish_reason", nullptr}, | |
| {"index", 0}, | |
| {"delta", json{ | |
| {"content", content}}} | |
| }})}, | |
| {"created", t}, | |
| {"id", completion_id}, | |
| {"model", modelname}, | |
| {"object", "chat.completion.chunk"}}; | |
| return std::vector<json>({initial_ret, second_ret}); | |
| } | |
| } else { | |
| // Some idiosyncrasy in task processing logic makes several trailing calls | |
| // with empty content, we ignore these at the calee site. | |
| if (content.empty()) { | |
| return std::vector<json>({json::object()}); | |
| } | |
| choices = json::array({json{ | |
| {"finish_reason", nullptr}, | |
| {"index", 0}, | |
| {"delta", | |
| json{ | |
| {"content", content}, | |
| }}, | |
| }}); | |
| } | |
| } | |
| json ret = json { | |
| {"choices", choices}, | |
| {"created", t}, | |
| {"id", completion_id}, | |
| {"model", modelname}, | |
| {"object", "chat.completion.chunk"} | |
| }; | |
| if (!finish_reason.empty()) { | |
| int num_tokens_predicted = json_value(result, "tokens_predicted", 0); | |
| int num_prompt_tokens = json_value(result, "tokens_evaluated", 0); | |
| ret.push_back({"usage", json { | |
| {"completion_tokens", num_tokens_predicted}, | |
| {"prompt_tokens", num_prompt_tokens}, | |
| {"total_tokens", num_tokens_predicted + num_prompt_tokens} | |
| }}); | |
| } | |
| return std::vector<json>({ret}); | |
| } | |
| static json format_embeddings_response_oaicompat(const json & request, const json & embeddings) { | |
| json data = json::array(); | |
| int i = 0; | |
| for (auto & elem : embeddings) { | |
| data.push_back(json{ | |
| {"embedding", json_value(elem, "embedding", json::array())}, | |
| {"index", i++}, | |
| {"object", "embedding"} | |
| }); | |
| } | |
| json res = json { | |
| {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))}, | |
| {"object", "list"}, | |
| {"usage", json { | |
| {"prompt_tokens", 0}, | |
| {"total_tokens", 0} | |
| }}, | |
| {"data", data} | |
| }; | |
| return res; | |
| } | |
| static json format_tokenizer_response(const std::vector<llama_token> & tokens) { | |
| return json { | |
| {"tokens", tokens} | |
| }; | |
| } | |
| static json format_detokenized_response(const std::string & content) { | |
| return json { | |
| {"content", content} | |
| }; | |
| } | |
| static json format_error_response(const std::string & message, const enum error_type type) { | |
| std::string type_str; | |
| int code = 500; | |
| switch (type) { | |
| case ERROR_TYPE_INVALID_REQUEST: | |
| type_str = "invalid_request_error"; | |
| code = 400; | |
| break; | |
| case ERROR_TYPE_AUTHENTICATION: | |
| type_str = "authentication_error"; | |
| code = 401; | |
| break; | |
| case ERROR_TYPE_NOT_FOUND: | |
| type_str = "not_found_error"; | |
| code = 404; | |
| break; | |
| case ERROR_TYPE_SERVER: | |
| type_str = "server_error"; | |
| code = 500; | |
| break; | |
| case ERROR_TYPE_PERMISSION: | |
| type_str = "permission_error"; | |
| code = 403; | |
| break; | |
| case ERROR_TYPE_NOT_SUPPORTED: | |
| type_str = "not_supported_error"; | |
| code = 501; | |
| break; | |
| case ERROR_TYPE_UNAVAILABLE: | |
| type_str = "unavailable_error"; | |
| code = 503; | |
| break; | |
| } | |
| return json { | |
| {"code", code}, | |
| {"message", message}, | |
| {"type", type_str}, | |
| }; | |
| } | |