Spaces:
Runtime error
Runtime error
| static llama_context ** g_ctx; | |
| static llama_model ** g_model; | |
| static gpt_params * g_params; | |
| static std::vector<llama_token> * g_input_tokens; | |
| static std::ostringstream * g_output_ss; | |
| static std::vector<llama_token> * g_output_tokens; | |
| static bool is_interacting = false; | |
| static void write_logfile( | |
| const llama_context * ctx, const gpt_params & params, const llama_model * model, | |
| const std::vector<llama_token> & input_tokens, const std::string & output, | |
| const std::vector<llama_token> & output_tokens | |
| ) { | |
| if (params.logdir.empty()) { | |
| return; | |
| } | |
| const std::string timestamp = get_sortable_timestamp(); | |
| const bool success = create_directory_with_parents(params.logdir); | |
| if (!success) { | |
| fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n", | |
| __func__, params.logdir.c_str()); | |
| return; | |
| } | |
| const std::string logfile_path = params.logdir + timestamp + ".yml"; | |
| FILE * logfile = fopen(logfile_path.c_str(), "w"); | |
| if (logfile == NULL) { | |
| fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str()); | |
| return; | |
| } | |
| fprintf(logfile, "binary: infill\n"); | |
| char model_desc[128]; | |
| llama_model_desc(model, model_desc, sizeof(model_desc)); | |
| dump_non_result_info_yaml(logfile, params, ctx, timestamp, input_tokens, model_desc); | |
| fprintf(logfile, "\n"); | |
| fprintf(logfile, "######################\n"); | |
| fprintf(logfile, "# Generation Results #\n"); | |
| fprintf(logfile, "######################\n"); | |
| fprintf(logfile, "\n"); | |
| dump_string_yaml_multiline(logfile, "output", output.c_str()); | |
| dump_vector_int_yaml(logfile, "output_tokens", output_tokens); | |
| llama_dump_timing_info_yaml(logfile, ctx); | |
| fclose(logfile); | |
| } | |
| static void sigint_handler(int signo) { | |
| if (signo == SIGINT) { | |
| if (!is_interacting) { | |
| is_interacting = true; | |
| } else { | |
| console::cleanup(); | |
| printf("\n"); | |
| llama_print_timings(*g_ctx); | |
| write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens); | |
| _exit(130); | |
| } | |
| } | |
| } | |
| int main(int argc, char ** argv) { | |
| gpt_params params; | |
| llama_sampling_params & sparams = params.sparams; | |
| g_params = ¶ms; | |
| if (!gpt_params_parse(argc, argv, params)) { | |
| return 1; | |
| } | |
| log_set_target(log_filename_generator("infill", "log")); | |
| LOG_TEE("Log start\n"); | |
| log_dump_cmdline(argc, argv); | |
| console::init(params.simple_io, params.use_color); | |
| atexit([]() { console::cleanup(); }); | |
| if (params.logits_all) { | |
| printf("\n************\n"); | |
| printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__); | |
| printf("************\n\n"); | |
| return 0; | |
| } | |
| if (params.embedding) { | |
| printf("\n************\n"); | |
| printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__); | |
| printf("************\n\n"); | |
| return 0; | |
| } | |
| if (params.n_ctx != 0 && params.n_ctx < 8) { | |
| LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__); | |
| params.n_ctx = 8; | |
| } | |
| if (params.instruct) { | |
| printf("\n************\n"); | |
| printf("%s: please use the 'main' tool for instruct mode\n", __func__); | |
| printf("************\n\n"); | |
| return 0; | |
| } | |
| if (params.chatml) { | |
| printf("\n************\n"); | |
| printf("%s: please use the 'main' tool for chatml mode\n", __func__); | |
| printf("************\n\n"); | |
| return 0; | |
| } | |
| if (!params.antiprompt.empty()) { | |
| printf("\n************\n"); | |
| printf("%s: please use the 'main' tool for antiprompt mode\n", __func__); | |
| printf("************\n\n"); | |
| return 0; | |
| } | |
| if (!params.interactive_first && (params.input_prefix.empty() && params.input_suffix.empty())) { | |
| printf("\n************\n"); | |
| printf("%s: please use '--interactive_first' or specify '--in_prefix' and/or '--in_suffix'\n", __func__); | |
| printf("************\n\n"); | |
| return 0; | |
| } | |
| if (params.random_prompt) { | |
| printf("\n************\n"); | |
| printf("%s: please use the 'main' tool for random prompt mode\n", __func__); | |
| printf("************\n\n"); | |
| return 0; | |
| } | |
| if (!params.path_prompt_cache.empty()) { | |
| printf("\n************\n"); | |
| printf("%s: infill does not support prompt caching\n", __func__); | |
| printf("************\n\n"); | |
| return 0; | |
| } | |
| if (params.rope_freq_base != 0.0) { | |
| LOG_TEE("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base); | |
| } | |
| if (params.rope_freq_scale != 0.0) { | |
| LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale); | |
| } | |
| LOG_TEE("%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); | |
| LOG_TEE("%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); | |
| if (params.seed == LLAMA_DEFAULT_SEED) { | |
| params.seed = time(NULL); | |
| } | |
| LOG_TEE("%s: seed = %u\n", __func__, params.seed); | |
| std::mt19937 rng(params.seed); | |
| LOG("%s: llama backend init\n", __func__); | |
| llama_backend_init(); | |
| llama_numa_init(params.numa); | |
| llama_model * model; | |
| llama_context * ctx; | |
| llama_context * ctx_guidance = NULL; | |
| g_model = &model; | |
| g_ctx = &ctx; | |
| // load the model and apply lora adapter, if any | |
| LOG("%s: load the model and apply lora adapter, if any\n", __func__); | |
| std::tie(model, ctx) = llama_init_from_gpt_params(params); | |
| if (sparams.cfg_scale > 1.f) { | |
| struct llama_context_params lparams = llama_context_params_from_gpt_params(params); | |
| ctx_guidance = llama_new_context_with_model(model, lparams); | |
| } | |
| if (model == NULL) { | |
| LOG_TEE("%s: error: unable to load model\n", __func__); | |
| return 1; | |
| } | |
| const int n_ctx_train = llama_n_ctx_train(model); | |
| const int n_ctx = llama_n_ctx(ctx); | |
| LOG("n_ctx: %d\n", n_ctx); | |
| if (n_ctx > n_ctx_train) { | |
| LOG_TEE("%s: warning: model was trained on only %d context tokens (%d specified)\n", | |
| __func__, n_ctx_train, n_ctx); | |
| } | |
| // print system information | |
| { | |
| LOG_TEE("\n"); | |
| LOG_TEE("%s\n", get_system_info(params).c_str()); | |
| } | |
| const bool add_bos = llama_should_add_bos_token(model); | |
| GGML_ASSERT(llama_add_eos_token(model) != 1); | |
| LOG("add_bos: %d\n", add_bos); | |
| bool suff_rm_leading_spc = params.escape; | |
| if (suff_rm_leading_spc && params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) { | |
| params.input_suffix.erase(0, 1); | |
| suff_rm_leading_spc = false; | |
| } | |
| std::vector<llama_token> embd_inp; | |
| std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, false); | |
| std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, false); | |
| const int space_token = 29871; | |
| if (suff_rm_leading_spc && inp_sfx[0] == space_token) { | |
| inp_sfx.erase(inp_sfx.begin()); | |
| } | |
| inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(model)); | |
| if (add_bos) { | |
| inp_pfx.insert(inp_pfx.begin(), llama_token_bos(model)); | |
| } | |
| inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(model)); | |
| embd_inp = inp_pfx; | |
| embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end()); | |
| embd_inp.push_back(llama_token_middle(model)); | |
| LOG("prefix: \"%s\"\n", log_tostr(params.input_prefix)); | |
| LOG("suffix: \"%s\"\n", log_tostr(params.input_suffix)); | |
| LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str()); | |
| // Should not run without any tokens | |
| if (embd_inp.empty()) { | |
| embd_inp.push_back(llama_token_bos(model)); | |
| LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str()); | |
| } | |
| // Tokenize negative prompt | |
| std::vector<llama_token> guidance_inp; | |
| int guidance_offset = 0; | |
| int original_prompt_len = 0; | |
| if (ctx_guidance) { | |
| LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt)); | |
| guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, true); | |
| LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp).c_str()); | |
| std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, true); | |
| LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp).c_str()); | |
| original_prompt_len = original_inp.size(); | |
| guidance_offset = (int)guidance_inp.size() - original_prompt_len; | |
| LOG("original_prompt_len: %s", log_tostr(original_prompt_len)); | |
| LOG("guidance_offset: %s", log_tostr(guidance_offset)); | |
| } | |
| if ((int) embd_inp.size() > n_ctx - 4) { | |
| LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4); | |
| return 1; | |
| } | |
| // number of tokens to keep when resetting context | |
| if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) { | |
| params.n_keep = (int)embd_inp.size(); | |
| } | |
| LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx).c_str()); | |
| LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx).c_str()); | |
| // enable interactive mode if interactive start is specified | |
| if (params.interactive_first) { | |
| params.interactive = true; | |
| } | |
| if (params.verbose_prompt) { | |
| LOG_TEE("\n"); | |
| LOG_TEE("%s: prompt: '%s'\n", __func__, params.prompt.c_str()); | |
| LOG_TEE("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); | |
| for (int i = 0; i < (int) embd_inp.size(); i++) { | |
| LOG_TEE("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str()); | |
| } | |
| if (ctx_guidance) { | |
| LOG_TEE("\n"); | |
| LOG_TEE("%s: negative prompt: '%s'\n", __func__, sparams.cfg_negative_prompt.c_str()); | |
| LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size()); | |
| for (int i = 0; i < (int) guidance_inp.size(); i++) { | |
| LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str()); | |
| } | |
| } | |
| if (params.n_keep > 0) { | |
| LOG_TEE("%s: static prompt based on n_keep: '", __func__); | |
| for (int i = 0; i < params.n_keep; i++) { | |
| LOG_TEE("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str()); | |
| } | |
| LOG_TEE("'\n"); | |
| } | |
| LOG_TEE("\n"); | |
| } | |
| if (params.interactive) { | |
| struct sigaction sigint_action; | |
| sigint_action.sa_handler = sigint_handler; | |
| sigemptyset (&sigint_action.sa_mask); | |
| sigint_action.sa_flags = 0; | |
| sigaction(SIGINT, &sigint_action, NULL); | |
| auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL { | |
| return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false; | |
| }; | |
| SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true); | |
| LOG_TEE("%s: interactive mode on.\n", __func__); | |
| if (params.input_prefix_bos) { | |
| LOG_TEE("Input prefix with BOS\n"); | |
| } | |
| if (!params.input_prefix.empty()) { | |
| LOG_TEE("Input prefix: '%s'\n", params.input_prefix.c_str()); | |
| } | |
| if (!params.input_suffix.empty()) { | |
| LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str()); | |
| } | |
| } | |
| LOG_TEE("sampling: \n%s\n", llama_sampling_print(sparams).c_str()); | |
| LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep); | |
| LOG_TEE("\n\n"); | |
| LOG_TEE("\n##### Infill mode #####\n\n"); | |
| if (params.infill) { | |
| printf("\n************\n"); | |
| printf("no need to specify '--infill', always running infill\n"); | |
| printf("************\n\n"); | |
| } | |
| if (params.interactive) { | |
| const char *control_message; | |
| if (params.multiline_input) { | |
| control_message = " - To return control to LLaMA, end your input with '\\'.\n" | |
| " - To return control without starting a new line, end your input with '/'.\n"; | |
| } else { | |
| control_message = " - Press Return to return control to LLaMA.\n" | |
| " - To return control without starting a new line, end your input with '/'.\n" | |
| " - If you want to submit another line, end your input with '\\'.\n"; | |
| } | |
| LOG_TEE("== Running in interactive mode. ==\n"); | |
| LOG_TEE( " - Press Ctrl+C to interject at any time.\n"); | |
| LOG_TEE( "%s\n", control_message); | |
| is_interacting = params.interactive_first; | |
| } | |
| bool input_echo = true; | |
| int n_past = 0; | |
| int n_remain = params.n_predict; | |
| int n_consumed = 0; | |
| int n_past_guidance = 0; | |
| std::vector<int> input_tokens; g_input_tokens = &input_tokens; | |
| std::vector<int> output_tokens; g_output_tokens = &output_tokens; | |
| std::ostringstream output_ss; g_output_ss = &output_ss; | |
| // the first thing we will do is to output the prompt, so set color accordingly | |
| console::set_display(console::prompt); | |
| std::vector<llama_token> embd; | |
| std::vector<llama_token> embd_guidance; | |
| struct llama_sampling_context * ctx_sampling = llama_sampling_init(sparams); | |
| while (n_remain != 0 || params.interactive) { | |
| // predict | |
| if (!embd.empty()) { | |
| // Note: n_ctx - 4 here is to match the logic for commandline prompt handling via | |
| // --prompt or --file which uses the same value. | |
| int max_embd_size = n_ctx - 4; | |
| // Ensure the input doesn't exceed the context size by truncating embd if necessary. | |
| if ((int) embd.size() > max_embd_size) { | |
| const int skipped_tokens = (int) embd.size() - max_embd_size; | |
| embd.resize(max_embd_size); | |
| console::set_display(console::error); | |
| printf("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : ""); | |
| console::set_display(console::reset); | |
| fflush(stdout); | |
| } | |
| // infinite text generation via context swapping | |
| // if we run out of context: | |
| // - take the n_keep first tokens from the original prompt (via n_past) | |
| // - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches | |
| if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) { | |
| if (params.n_predict == -2) { | |
| LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict); | |
| break; | |
| } | |
| const int n_left = n_past - params.n_keep - 1; | |
| const int n_discard = n_left/2; | |
| LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n", | |
| n_past, n_left, n_ctx, params.n_keep, n_discard); | |
| llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1); | |
| llama_kv_cache_seq_add(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard); | |
| n_past -= n_discard; | |
| if (ctx_guidance) { | |
| n_past_guidance -= n_discard; | |
| } | |
| LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance); | |
| LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str()); | |
| } | |
| // evaluate tokens in batches | |
| // embd is typically prepared beforehand to fit within a batch, but not always | |
| if (ctx_guidance) { | |
| int input_size = 0; | |
| llama_token * input_buf = NULL; | |
| if (n_past_guidance < (int) guidance_inp.size()) { | |
| // Guidance context should have the same data with these modifications: | |
| // | |
| // * Replace the initial prompt | |
| // * Shift everything by guidance_offset | |
| embd_guidance = guidance_inp; | |
| if (embd.begin() + original_prompt_len < embd.end()) { | |
| embd_guidance.insert( | |
| embd_guidance.end(), | |
| embd.begin() + original_prompt_len, | |
| embd.end() | |
| ); | |
| } | |
| input_buf = embd_guidance.data(); | |
| input_size = embd_guidance.size(); | |
| LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance).c_str()); | |
| } else { | |
| input_buf = embd.data(); | |
| input_size = embd.size(); | |
| } | |
| for (int i = 0; i < input_size; i += params.n_batch) { | |
| int n_eval = std::min(input_size - i, params.n_batch); | |
| if (llama_decode(ctx_guidance, llama_batch_get_one(input_buf + i, n_eval, n_past_guidance, 0))) { | |
| LOG_TEE("%s : failed to eval\n", __func__); | |
| return 1; | |
| } | |
| n_past_guidance += n_eval; | |
| } | |
| } | |
| for (int i = 0; i < (int) embd.size(); i += params.n_batch) { | |
| int n_eval = (int) embd.size() - i; | |
| if (n_eval > params.n_batch) { | |
| n_eval = params.n_batch; | |
| } | |
| LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str()); | |
| if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) { | |
| LOG_TEE("%s : failed to eval\n", __func__); | |
| return 1; | |
| } | |
| n_past += n_eval; | |
| LOG("n_past = %d\n", n_past); | |
| } | |
| } | |
| embd.clear(); | |
| embd_guidance.clear(); | |
| if ((int) embd_inp.size() <= n_consumed && !is_interacting) { | |
| const llama_token id = llama_sampling_sample(ctx_sampling, ctx, ctx_guidance); | |
| llama_sampling_accept(ctx_sampling, ctx, id, true); | |
| LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, ctx_sampling->prev).c_str()); | |
| embd.push_back(id); | |
| // echo this to console | |
| input_echo = true; | |
| // decrement remaining sampling budget | |
| --n_remain; | |
| LOG("n_remain: %d\n", n_remain); | |
| } else { | |
| // some user input remains from prompt or interaction, forward it to processing | |
| LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed); | |
| while ((int) embd_inp.size() > n_consumed) { | |
| embd.push_back(embd_inp[n_consumed]); | |
| // push the prompt in the sampling context in order to apply repetition penalties later | |
| // for the prompt, we don't apply grammar rules | |
| llama_sampling_accept(ctx_sampling, ctx, embd_inp[n_consumed], false); | |
| ++n_consumed; | |
| if ((int) embd.size() >= params.n_batch) { | |
| break; | |
| } | |
| } | |
| } | |
| // display text | |
| if (input_echo) { | |
| for (auto id : embd) { | |
| const std::string token_str = llama_token_to_piece(ctx, id); | |
| printf("%s", token_str.c_str()); | |
| if (embd.size() > 1) { | |
| input_tokens.push_back(id); | |
| } else { | |
| output_tokens.push_back(id); | |
| output_ss << token_str; | |
| } | |
| } | |
| fflush(stdout); | |
| } | |
| // reset color to default if we there is no pending user input | |
| if (input_echo && (int) embd_inp.size() == n_consumed) { | |
| console::set_display(console::reset); | |
| } | |
| // if not currently processing queued inputs; | |
| if ((int) embd_inp.size() <= n_consumed) { | |
| // deal with eot token in infill mode | |
| if ((llama_sampling_last(ctx_sampling) == llama_token_eot(model) || is_interacting) && params.interactive){ | |
| if (is_interacting && !params.interactive_first) { | |
| // print an eot token | |
| printf("%s", llama_token_to_piece(ctx, llama_token_eot(model)).c_str()); | |
| } | |
| fflush(stdout); | |
| printf("\n"); | |
| console::set_display(console::user_input); | |
| std::string buffer; | |
| std::string line; | |
| bool another_line=true; | |
| // set a new prefix via stdin | |
| do { | |
| another_line = console::readline(line, params.multiline_input); | |
| buffer += line; | |
| } while (another_line); | |
| // check if we got an empty line, if so we use the old input | |
| if (!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) { | |
| params.input_prefix = buffer; | |
| } | |
| buffer.clear(); | |
| // set a new suffix via stdin | |
| do { | |
| another_line = console::readline(line, params.multiline_input); | |
| buffer += line; | |
| } while (another_line); | |
| // check if we got an empty line | |
| if (!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) { | |
| params.input_suffix = buffer; | |
| } | |
| buffer.clear(); | |
| // done taking input, reset color | |
| console::set_display(console::reset); | |
| if (params.escape) { | |
| //process escape sequences, for the initial prompt this is done in common.cpp when we load the params, but for the interactive mode we need to do it here | |
| process_escapes(params.input_prefix); | |
| process_escapes(params.input_suffix); | |
| } | |
| suff_rm_leading_spc = params.escape; | |
| if (suff_rm_leading_spc && params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) { | |
| params.input_suffix.erase(0, 1); | |
| suff_rm_leading_spc = false; | |
| } | |
| // tokenize new prefix and suffix | |
| std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, false); | |
| std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, false); | |
| if (suff_rm_leading_spc && inp_sfx[0] == space_token) { | |
| inp_sfx.erase(inp_sfx.begin()); | |
| } | |
| inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(model)); | |
| if (add_bos) { | |
| inp_pfx.insert(inp_pfx.begin(), llama_token_bos(model)); | |
| } | |
| inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(model)); | |
| embd_inp = inp_pfx; | |
| embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end()); | |
| embd_inp.push_back(llama_token_middle(model)); | |
| embd.clear(); | |
| embd_guidance.clear(); | |
| n_remain = params.n_predict; | |
| n_past = 0; | |
| n_consumed = 0; | |
| // LOG_TEE("took new input\n"); | |
| is_interacting = false; | |
| } | |
| // deal with end of generation tokens in interactive mode | |
| else if (llama_token_is_eog(model, llama_sampling_last(ctx_sampling))) { | |
| LOG("found EOS token\n"); | |
| if (params.interactive) { | |
| is_interacting = true; | |
| printf("\n"); | |
| console::set_display(console::user_input); | |
| fflush(stdout); | |
| } | |
| } | |
| if (n_past > 0 && is_interacting && !params.interactive) { | |
| LOG("waiting for user input\n"); | |
| if (params.input_prefix_bos) { | |
| LOG("adding input prefix BOS token\n"); | |
| embd_inp.push_back(llama_token_bos(model)); | |
| } | |
| std::string buffer; | |
| if (!params.input_prefix.empty()) { | |
| LOG("appending input prefix: '%s'\n", params.input_prefix.c_str()); | |
| buffer += params.input_prefix; | |
| printf("%s", buffer.c_str()); | |
| } | |
| std::string line; | |
| bool another_line = true; | |
| do { | |
| another_line = console::readline(line, params.multiline_input); | |
| buffer += line; | |
| } while (another_line); | |
| // done taking input, reset color | |
| console::set_display(console::reset); | |
| // Add tokens to embd only if the input buffer is non-empty | |
| // Entering a empty line lets the user pass control back | |
| if (buffer.length() > 1) { | |
| // append input suffix if any | |
| if (!params.input_suffix.empty()) { | |
| LOG("appending input suffix: '%s'\n", params.input_suffix.c_str()); | |
| buffer += params.input_suffix; | |
| printf("%s", params.input_suffix.c_str()); | |
| } | |
| LOG("buffer: '%s'\n", buffer.c_str()); | |
| const size_t original_size = embd_inp.size(); | |
| const auto line_inp = ::llama_tokenize(ctx, buffer, false); | |
| LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str()); | |
| embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end()); | |
| for (size_t i = original_size; i < embd_inp.size(); ++i) { | |
| const llama_token token = embd_inp[i]; | |
| output_tokens.push_back(token); | |
| output_ss << llama_token_to_piece(ctx, token); | |
| } | |
| n_remain -= line_inp.size(); | |
| LOG("n_remain: %d\n", n_remain); | |
| } else { | |
| LOG("empty line, passing control back\n"); | |
| } | |
| input_echo = false; // do not echo this again | |
| } | |
| if (n_past > 0) { | |
| if (is_interacting) { | |
| llama_sampling_reset(ctx_sampling); | |
| } | |
| is_interacting = false; | |
| } | |
| } | |
| // end of generation | |
| if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !params.interactive) { | |
| break; | |
| } | |
| // In interactive mode, respect the maximum number of tokens and drop back to user input when reached. | |
| // We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size). | |
| if (params.interactive && n_remain <= 0 && params.n_predict >= 0) { | |
| n_remain = params.n_predict; | |
| is_interacting = true; | |
| } | |
| } | |
| if (!params.interactive && n_remain <= 0) { | |
| printf("%s", llama_token_to_piece(ctx, llama_token_eot(model)).c_str()); | |
| fflush(stdout); | |
| } | |
| llama_print_timings(ctx); | |
| write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens); | |
| if (ctx_guidance) { llama_free(ctx_guidance); } | |
| llama_free(ctx); | |
| llama_free_model(model); | |
| llama_sampling_free(ctx_sampling); | |
| llama_backend_free(); | |
| LOG_TEE("Log end\n"); | |
| return 0; | |
| } | |