Spaces:
Runtime error
Runtime error
| struct quant_option { | |
| std::string name; | |
| llama_ftype ftype; | |
| std::string desc; | |
| }; | |
| static const std::vector<struct quant_option> QUANT_OPTIONS = { | |
| { "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 3.56G, +0.2166 ppl @ LLaMA-v1-7B", }, | |
| { "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 3.90G, +0.1585 ppl @ LLaMA-v1-7B", }, | |
| { "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 4.33G, +0.0683 ppl @ LLaMA-v1-7B", }, | |
| { "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0349 ppl @ LLaMA-v1-7B", }, | |
| { "IQ2_XXS",LLAMA_FTYPE_MOSTLY_IQ2_XXS," 2.06 bpw quantization", }, | |
| { "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", }, | |
| { "IQ2_S", LLAMA_FTYPE_MOSTLY_IQ2_S, " 2.5 bpw quantization", }, | |
| { "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", }, | |
| { "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", }, | |
| { "IQ1_M", LLAMA_FTYPE_MOSTLY_IQ1_M, " 1.75 bpw quantization", }, | |
| { "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", }, | |
| { "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", }, | |
| { "IQ3_XXS",LLAMA_FTYPE_MOSTLY_IQ3_XXS," 3.06 bpw quantization", }, | |
| { "IQ3_S", LLAMA_FTYPE_MOSTLY_IQ3_S, " 3.44 bpw quantization", }, | |
| { "IQ3_M", LLAMA_FTYPE_MOSTLY_IQ3_M, " 3.66 bpw quantization mix", }, | |
| { "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" }, | |
| { "IQ3_XS", LLAMA_FTYPE_MOSTLY_IQ3_XS, " 3.3 bpw quantization" , }, | |
| { "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", }, | |
| { "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.07G, +0.2496 ppl @ LLaMA-v1-7B", }, | |
| { "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1764 ppl @ LLaMA-v1-7B", }, | |
| { "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.50 bpw non-linear quantization", }, | |
| { "IQ4_XS", LLAMA_FTYPE_MOSTLY_IQ4_XS, " 4.25 bpw non-linear quantization", }, | |
| { "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", }, | |
| { "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 3.59G, +0.0992 ppl @ LLaMA-v1-7B", }, | |
| { "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 3.80G, +0.0532 ppl @ LLaMA-v1-7B", }, | |
| { "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", }, | |
| { "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 4.33G, +0.0400 ppl @ LLaMA-v1-7B", }, | |
| { "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0122 ppl @ LLaMA-v1-7B", }, | |
| { "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, +0.0008 ppl @ LLaMA-v1-7B", }, | |
| { "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ LLaMA-v1-7B", }, | |
| { "F16", LLAMA_FTYPE_MOSTLY_F16, "13.00G @ 7B", }, | |
| { "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", }, | |
| // Note: Ensure COPY comes after F32 to avoid ftype 0 from matching. | |
| { "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", }, | |
| }; | |
| static const char * const LLM_KV_QUANTIZE_IMATRIX_FILE = "quantize.imatrix.file"; | |
| static const char * const LLM_KV_QUANTIZE_IMATRIX_DATASET = "quantize.imatrix.dataset"; | |
| static const char * const LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES = "quantize.imatrix.entries_count"; | |
| static const char * const LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS = "quantize.imatrix.chunks_count"; | |
| static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) { | |
| std::string ftype_str; | |
| for (auto ch : ftype_str_in) { | |
| ftype_str.push_back(std::toupper(ch)); | |
| } | |
| for (auto & it : QUANT_OPTIONS) { | |
| if (it.name == ftype_str) { | |
| ftype = it.ftype; | |
| ftype_str_out = it.name; | |
| return true; | |
| } | |
| } | |
| try { | |
| int ftype_int = std::stoi(ftype_str); | |
| for (auto & it : QUANT_OPTIONS) { | |
| if (it.ftype == ftype_int) { | |
| ftype = it.ftype; | |
| ftype_str_out = it.name; | |
| return true; | |
| } | |
| } | |
| } | |
| catch (...) { | |
| // stoi failed | |
| } | |
| return false; | |
| } | |
| // usage: | |
| // ./quantize [--allow-requantize] [--leave-output-tensor] [--pure] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads] | |
| // | |
| [[noreturn]] | |
| static void usage(const char * executable) { | |
| printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] [--output-tensor-type] [--token-embedding-type] [--override-kv] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable); | |
| printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n"); | |
| printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n"); | |
| printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n"); | |
| printf(" --imatrix file_name: use data in file_name as importance matrix for quant optimizations\n"); | |
| printf(" --include-weights tensor_name: use importance matrix for this/these tensor(s)\n"); | |
| printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n"); | |
| printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n"); | |
| printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n"); | |
| printf(" --keep-split: will generate quatized model in the same shards as input"); | |
| printf(" --override-kv KEY=TYPE:VALUE\n"); | |
| printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n"); | |
| printf("Note: --include-weights and --exclude-weights cannot be used together\n"); | |
| printf("\nAllowed quantization types:\n"); | |
| for (auto & it : QUANT_OPTIONS) { | |
| if (it.name != "COPY") { | |
| printf(" %2d or ", it.ftype); | |
| } else { | |
| printf(" "); | |
| } | |
| printf("%-7s : %s\n", it.name.c_str(), it.desc.c_str()); | |
| } | |
| exit(1); | |
| } | |
| static int load_imatrix(const std::string & imatrix_file, std::string & imatrix_dataset, std::unordered_map<std::string, std::vector<float>> & imatrix_data) { | |
| std::ifstream in(imatrix_file.c_str(), std::ios::binary); | |
| if (!in) { | |
| printf("%s: failed to open %s\n",__func__, imatrix_file.c_str()); | |
| exit(1); | |
| } | |
| int n_entries; | |
| in.read((char *)&n_entries, sizeof(n_entries)); | |
| if (in.fail() || n_entries < 1) { | |
| printf("%s: no data in file %s\n", __func__, imatrix_file.c_str()); | |
| exit(1); | |
| } | |
| for (int i = 0; i < n_entries; ++i) { | |
| int len; in.read((char *)&len, sizeof(len)); | |
| std::vector<char> name_as_vec(len+1); | |
| in.read((char *)name_as_vec.data(), len); | |
| if (in.fail()) { | |
| printf("%s: failed reading name for entry %d from %s\n", __func__, i+1, imatrix_file.c_str()); | |
| exit(1); | |
| } | |
| name_as_vec[len] = 0; | |
| std::string name{name_as_vec.data()}; | |
| auto & e = imatrix_data[name]; | |
| int ncall; | |
| in.read((char *)&ncall, sizeof(ncall)); | |
| int nval; | |
| in.read((char *)&nval, sizeof(nval)); | |
| if (in.fail() || nval < 1) { | |
| printf("%s: failed reading number of values for entry %d\n", __func__, i); | |
| imatrix_data = {}; | |
| exit(1); | |
| } | |
| e.resize(nval); | |
| in.read((char *)e.data(), nval*sizeof(float)); | |
| if (in.fail()) { | |
| printf("%s: failed reading data for entry %d\n", __func__, i); | |
| imatrix_data = {}; | |
| exit(1); | |
| } | |
| if (ncall > 0) { | |
| for (auto& v : e) v /= ncall; | |
| } | |
| if (getenv("LLAMA_TRACE")) { | |
| printf("%s: loaded data (size = %6d, ncall = %6d) for '%s'\n", __func__, int(e.size()), ncall, name.c_str()); | |
| } | |
| } | |
| // latest imatrix version contains the dataset filename at the end of the file | |
| int m_last_call = 0; | |
| if (in.peek() != EOF) { | |
| in.read((char *)&m_last_call, sizeof(m_last_call)); | |
| int dataset_len; | |
| in.read((char *)&dataset_len, sizeof(dataset_len)); | |
| std::vector<char> dataset_as_vec(dataset_len); | |
| in.read(dataset_as_vec.data(), dataset_len); | |
| imatrix_dataset.assign(dataset_as_vec.begin(), dataset_as_vec.end()); | |
| printf("%s: imatrix dataset='%s'\n", __func__, imatrix_dataset.c_str()); | |
| } | |
| printf("%s: loaded %d importance matrix entries from %s computed on %d chunks\n", __func__, int(imatrix_data.size()), imatrix_file.c_str(), m_last_call); | |
| return m_last_call; | |
| } | |
| static int prepare_imatrix(const std::string & imatrix_file, | |
| std::string & imatrix_dataset, | |
| const std::vector<std::string> & included_weights, | |
| const std::vector<std::string> & excluded_weights, | |
| std::unordered_map<std::string, std::vector<float>> & imatrix_data) { | |
| int m_last_call = -1; | |
| if (!imatrix_file.empty()) { | |
| m_last_call = load_imatrix(imatrix_file, imatrix_dataset, imatrix_data); | |
| } | |
| if (imatrix_data.empty()) { | |
| return m_last_call; | |
| } | |
| if (!excluded_weights.empty()) { | |
| for (auto& name : excluded_weights) { | |
| for (auto it = imatrix_data.begin(); it != imatrix_data.end(); ) { | |
| auto pos = it->first.find(name); | |
| if (pos != std::string::npos) it = imatrix_data.erase(it); | |
| else ++it; | |
| } | |
| } | |
| } | |
| if (!included_weights.empty()) { | |
| std::unordered_map<std::string, std::vector<float>> tmp; | |
| for (auto& name : included_weights) { | |
| for (auto& e : imatrix_data) { | |
| auto pos = e.first.find(name); | |
| if (pos != std::string::npos) { | |
| tmp.emplace(std::move(e)); | |
| } | |
| } | |
| } | |
| imatrix_data = std::move(tmp); | |
| } | |
| if (!imatrix_data.empty()) { | |
| printf("%s: have %d importance matrix entries\n", __func__, int(imatrix_data.size())); | |
| } | |
| return m_last_call; | |
| } | |
| static ggml_type parse_ggml_type(const char * arg) { | |
| ggml_type result = GGML_TYPE_COUNT; | |
| for (int j = 0; j < GGML_TYPE_COUNT; ++j) { | |
| auto type = ggml_type(j); | |
| const auto * name = ggml_type_name(type); | |
| if (name && strcmp(arg, name) == 0) { | |
| result = type; break; | |
| } | |
| } | |
| return result; | |
| } | |
| int main(int argc, char ** argv) { | |
| if (argc < 3) { | |
| usage(argv[0]); | |
| } | |
| llama_model_quantize_params params = llama_model_quantize_default_params(); | |
| int arg_idx = 1; | |
| std::string imatrix_file; | |
| std::vector<std::string> included_weights, excluded_weights; | |
| std::vector<llama_model_kv_override> kv_overrides; | |
| for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) { | |
| if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) { | |
| params.quantize_output_tensor = false; | |
| } else if (strcmp(argv[arg_idx], "--output-tensor-type") == 0) { | |
| if (arg_idx < argc-1) { | |
| params.output_tensor_type = parse_ggml_type(argv[++arg_idx]); | |
| } else { | |
| usage(argv[0]); | |
| } | |
| } else if (strcmp(argv[arg_idx], "--token-embedding-type") == 0) { | |
| if (arg_idx < argc-1) { | |
| params.token_embedding_type = parse_ggml_type(argv[++arg_idx]); | |
| } else { | |
| usage(argv[0]); | |
| } | |
| } else if (strcmp(argv[arg_idx], "--override-kv") == 0) { | |
| if (arg_idx == argc-1 || !parse_kv_override(argv[++arg_idx], kv_overrides)) { | |
| usage(argv[0]); | |
| } | |
| } else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) { | |
| params.allow_requantize = true; | |
| } else if (strcmp(argv[arg_idx], "--pure") == 0) { | |
| params.pure = true; | |
| } else if (strcmp(argv[arg_idx], "--imatrix") == 0) { | |
| if (arg_idx < argc-1) { | |
| imatrix_file = argv[++arg_idx]; | |
| } else { | |
| usage(argv[0]); | |
| } | |
| } else if (strcmp(argv[arg_idx], "--include-weights") == 0) { | |
| if (arg_idx < argc-1) { | |
| included_weights.emplace_back(argv[++arg_idx]); | |
| } else { | |
| usage(argv[0]); | |
| } | |
| } else if (strcmp(argv[arg_idx], "--exclude-weights") == 0) { | |
| if (arg_idx < argc-1) { | |
| excluded_weights.emplace_back(argv[++arg_idx]); | |
| } else { | |
| usage(argv[0]); | |
| } | |
| } else if (strcmp(argv[arg_idx], "--keep-split")) { | |
| params.keep_split = true; | |
| } else { | |
| usage(argv[0]); | |
| } | |
| } | |
| if (argc - arg_idx < 2) { | |
| printf("%s: bad arguments\n", argv[0]); | |
| usage(argv[0]); | |
| } | |
| if (!included_weights.empty() && !excluded_weights.empty()) { | |
| usage(argv[0]); | |
| } | |
| std::string imatrix_dataset; | |
| std::unordered_map<std::string, std::vector<float>> imatrix_data; | |
| int m_last_call = prepare_imatrix(imatrix_file, imatrix_dataset, included_weights, excluded_weights, imatrix_data); | |
| if (!imatrix_data.empty()) { | |
| params.imatrix = &imatrix_data; | |
| { | |
| llama_model_kv_override kvo; | |
| std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_FILE); | |
| kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR; | |
| strncpy(kvo.val_str, imatrix_file.c_str(), 127); | |
| kvo.val_str[127] = '\0'; | |
| kv_overrides.emplace_back(std::move(kvo)); | |
| } | |
| if (!imatrix_dataset.empty()) { | |
| llama_model_kv_override kvo; | |
| std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_DATASET); | |
| kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR; | |
| strncpy(kvo.val_str, imatrix_dataset.c_str(), 127); | |
| kvo.val_str[127] = '\0'; | |
| kv_overrides.emplace_back(std::move(kvo)); | |
| } | |
| { | |
| llama_model_kv_override kvo; | |
| std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES); | |
| kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT; | |
| kvo.val_i64 = imatrix_data.size(); | |
| kv_overrides.emplace_back(std::move(kvo)); | |
| } | |
| if (m_last_call > 0) { | |
| llama_model_kv_override kvo; | |
| std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS); | |
| kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT; | |
| kvo.val_i64 = m_last_call; | |
| kv_overrides.emplace_back(std::move(kvo)); | |
| } | |
| } | |
| if (!kv_overrides.empty()) { | |
| kv_overrides.emplace_back(); | |
| kv_overrides.back().key[0] = 0; | |
| params.kv_overrides = &kv_overrides; | |
| } | |
| llama_backend_init(); | |
| // parse command line arguments | |
| const std::string fname_inp = argv[arg_idx]; | |
| arg_idx++; | |
| std::string fname_out; | |
| std::string ftype_str; | |
| std::string suffix = ".gguf"; | |
| if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) { | |
| std::string fpath; | |
| const size_t pos = fname_inp.find_last_of("/\\"); | |
| if (pos != std::string::npos) { | |
| fpath = fname_inp.substr(0, pos + 1); | |
| } | |
| // export as [inp path]/ggml-model-[ftype]. Only add extension if there is no splitting | |
| fname_out = fpath + "ggml-model-" + ftype_str; | |
| if (!params.keep_split) { | |
| fname_out += suffix; | |
| } | |
| arg_idx++; | |
| if (ftype_str == "COPY") { | |
| params.only_copy = true; | |
| } | |
| } else { | |
| fname_out = argv[arg_idx]; | |
| if (params.keep_split && fname_out.find(suffix) != std::string::npos) { | |
| fname_out = fname_out.substr(0, fname_out.length() - suffix.length()); | |
| } | |
| arg_idx++; | |
| if (argc <= arg_idx) { | |
| fprintf(stderr, "%s: missing ftype\n", __func__); | |
| return 1; | |
| } | |
| if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) { | |
| fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]); | |
| return 1; | |
| } | |
| if (ftype_str == "COPY") { | |
| params.only_copy = true; | |
| } | |
| arg_idx++; | |
| } | |
| // parse nthreads | |
| if (argc > arg_idx) { | |
| try { | |
| params.nthread = std::stoi(argv[arg_idx]); | |
| } | |
| catch (const std::exception & e) { | |
| fprintf(stderr, "%s: invalid nthread '%s' (%s)\n", __func__, argv[arg_idx], e.what()); | |
| return 1; | |
| } | |
| } | |
| if ((params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || | |
| params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || | |
| params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S || | |
| params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || | |
| params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) && imatrix_data.empty()) { | |
| fprintf(stderr, "\n==========================================================================================================\n"); | |
| fprintf(stderr, "Please do not use IQ1_S, IQ1_M, IQ2_S, IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n"); | |
| fprintf(stderr, "==========================================================================================================\n\n\n"); | |
| return 1; | |
| } | |
| print_build_info(); | |
| fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str()); | |
| if (params.nthread > 0) { | |
| fprintf(stderr, " using %d threads", params.nthread); | |
| } | |
| fprintf(stderr, "\n"); | |
| const int64_t t_main_start_us = llama_time_us(); | |
| int64_t t_quantize_us = 0; | |
| // load the model | |
| { | |
| const int64_t t_start_us = llama_time_us(); | |
| if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), ¶ms)) { | |
| fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str()); | |
| return 1; | |
| } | |
| t_quantize_us = llama_time_us() - t_start_us; | |
| } | |
| // report timing | |
| { | |
| const int64_t t_main_end_us = llama_time_us(); | |
| printf("\n"); | |
| printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0); | |
| printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0); | |
| } | |
| llama_backend_free(); | |
| return 0; | |
| } | |