import torch from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig # Specify the model and tokenizer model_name = "deepseek-ai/deepseek-math-7b-instruct" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto") model.generation_config = GenerationConfig.from_pretrained(model_name) model.generation_config.pad_token_id = model.generation_config.eos_token_id # Function to read text from a file def read_input_text(file_path): with open(file_path, 'r', encoding='utf-8') as file: text = file.read() return text.strip() # Example usage: Replace 'input.txt' with your file path input_text = read_input_text('input.txt') # Prepare input as a chat message messages = [{"role": "user", "content": input_text}] input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") # Generate outputs from the model outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100) # Decode the generated output result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True) print(result)