from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda() input_text = """<|fim▁begin|>def quick_sort(arr): if len(arr) <= 1: return arr pivot = arr[0] left = [] right = [] <|fim▁hole|> if arr[i] < pivot: left.append(arr[i]) else: right.append(arr[i]) return quick_sort(left) + [pivot] + quick_sort(right)<|fim▁end|>""" inputs = tokenizer(input_text, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_length=128) print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])