Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
+
import torch
|
3 |
+
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True)
|
4 |
+
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
|
5 |
+
input_text = """<|fim▁begin|>def quick_sort(arr):
|
6 |
+
if len(arr) <= 1:
|
7 |
+
return arr
|
8 |
+
pivot = arr[0]
|
9 |
+
left = []
|
10 |
+
right = []
|
11 |
+
<|fim▁hole|>
|
12 |
+
if arr[i] < pivot:
|
13 |
+
left.append(arr[i])
|
14 |
+
else:
|
15 |
+
right.append(arr[i])
|
16 |
+
return quick_sort(left) + [pivot] + quick_sort(right)<|fim▁end|>"""
|
17 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
18 |
+
outputs = model.generate(**inputs, max_length=128)
|
19 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])
|