|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig |
|
|
|
|
|
model_name = "deepseek-ai/deepseek-math-7b-instruct" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto") |
|
model.generation_config = GenerationConfig.from_pretrained(model_name) |
|
model.generation_config.pad_token_id = model.generation_config.eos_token_id |
|
|
|
|
|
def read_input_text(file_path): |
|
with open(file_path, 'r', encoding='utf-8') as file: |
|
text = file.read() |
|
return text.strip() |
|
|
|
|
|
input_text = read_input_text('input.txt') |
|
|
|
|
|
messages = [{"role": "user", "content": input_text}] |
|
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") |
|
|
|
|
|
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100) |
|
|
|
|
|
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True) |
|
print(result) |
|
|