from fastapi import FastAPI, UploadFile, File, Response import cv2 import numpy as np import torch import torchvision.transforms as T from PIL import Image import io app = FastAPI() # Load AI Model MiDaS midas = torch.hub.load("intel-isl/MiDaS", "MiDaS_small") midas.eval() transform = T.Compose([ T.Resize((256, 256)), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) @app.post("/upload/") async def upload_image(file: UploadFile = File(...)): try: image_bytes = await file.read() print(f"📷 Ảnh nhận được ({len(image_bytes)} bytes)") image = Image.open(io.BytesIO(image_bytes)).convert("RGB") print("✅ Ảnh mở thành công!") # Chuyển đổi ảnh sang tensor img_tensor = transform(image).unsqueeze(0) with torch.no_grad(): depth_map = midas(img_tensor).squeeze().cpu().numpy() # Chuẩn hóa depth map depth_map = cv2.normalize(depth_map, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8) depth_resized = cv2.resize(depth_map, (160, 120)) # Mã hóa ảnh thành JPEG _, buffer = cv2.imencode(".jpg", depth_resized) print("✅ Depth Map đã được tạo!") return Response(content=buffer.tobytes(), media_type="image/jpeg") # 🟢 Trả ảnh trực tiếp except Exception as e: print("❌ Lỗi xử lý ảnh:", str(e)) return {"error": str(e)} if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=7860)