import torch from transformers import DPTFeatureExtractor, DPTForDepthEstimation from PIL import Image import requests device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load model và chuyển sang GPU feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large") model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large").to(device) # Tải ảnh url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) # Chuẩn bị input inputs = feature_extractor(images=image, return_tensors="pt").to(device) # Dự đoán depth map with torch.no_grad(): outputs = model(**inputs) # Lấy output và chuyển về dạng ảnh depth_map = outputs.predicted_depth depth_map = depth_map.squeeze().cpu().numpy()