adpro commited on
Commit
c3ff149
·
verified ·
1 Parent(s): b59c16a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -8
app.py CHANGED
@@ -1,4 +1,4 @@
1
- from fastapi import FastAPI, UploadFile, File
2
  import cv2
3
  import numpy as np
4
  import torch
@@ -8,18 +8,20 @@ import io
8
 
9
  app = FastAPI()
10
 
11
- # Load MiDaS model
12
  midas = torch.hub.load("intel-isl/MiDaS", "MiDaS_small")
13
  midas.eval()
14
- transform = T.Compose([T.Resize((256, 256)), T.ToTensor(),
15
- T.Normalize(mean=[0.485, 0.456, 0.406],
16
- std=[0.229, 0.224, 0.225])])
 
 
17
 
18
  @app.post("/upload/")
19
  async def upload_image(file: UploadFile = File(...)):
20
  try:
21
  image_bytes = await file.read()
22
- print(f"📷 Nhận ảnh ({len(image_bytes)} bytes)")
23
 
24
  image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
25
  print("✅ Ảnh mở thành công!")
@@ -33,11 +35,12 @@ async def upload_image(file: UploadFile = File(...)):
33
  depth_map = cv2.normalize(depth_map, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)
34
  depth_resized = cv2.resize(depth_map, (128, 64))
35
 
 
36
  _, buffer = cv2.imencode(".jpg", depth_resized)
37
  print("✅ Depth Map đã được tạo!")
38
 
39
- return {"depth_map": buffer.tobytes()}
40
-
41
  except Exception as e:
42
  print("❌ Lỗi xử lý ảnh:", str(e))
43
  return {"error": str(e)}
 
1
+ from fastapi import FastAPI, UploadFile, File, Response
2
  import cv2
3
  import numpy as np
4
  import torch
 
8
 
9
  app = FastAPI()
10
 
11
+ # Load AI Model MiDaS
12
  midas = torch.hub.load("intel-isl/MiDaS", "MiDaS_small")
13
  midas.eval()
14
+ transform = T.Compose([
15
+ T.Resize((256, 256)),
16
+ T.ToTensor(),
17
+ T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
18
+ ])
19
 
20
  @app.post("/upload/")
21
  async def upload_image(file: UploadFile = File(...)):
22
  try:
23
  image_bytes = await file.read()
24
+ print(f"📷 Ảnh nhận được ({len(image_bytes)} bytes)")
25
 
26
  image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
27
  print("✅ Ảnh mở thành công!")
 
35
  depth_map = cv2.normalize(depth_map, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)
36
  depth_resized = cv2.resize(depth_map, (128, 64))
37
 
38
+ # Mã hóa ảnh thành JPEG
39
  _, buffer = cv2.imencode(".jpg", depth_resized)
40
  print("✅ Depth Map đã được tạo!")
41
 
42
+ return Response(content=buffer.tobytes(), media_type="image/jpeg") # 🟢 Trả ảnh trực tiếp
43
+
44
  except Exception as e:
45
  print("❌ Lỗi xử lý ảnh:", str(e))
46
  return {"error": str(e)}