adpro commited on
Commit
49ff6ee
·
verified ·
1 Parent(s): 38420c4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -14
app.py CHANGED
@@ -8,25 +8,32 @@ import io
8
 
9
  app = FastAPI()
10
 
 
11
  midas = torch.hub.load("intel-isl/MiDaS", "MiDaS_small")
12
  midas.eval()
13
- transform = T.Compose([T.Resize((256, 256)), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
 
 
14
 
15
  @app.post("/upload/")
16
  async def upload_image(file: UploadFile = File(...)):
17
- image_bytes = await file.read()
18
- image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
 
 
19
 
20
- img_tensor = transform(image).unsqueeze(0)
21
- with torch.no_grad():
22
- depth_map = midas(img_tensor).squeeze().cpu().numpy()
 
23
 
24
- depth_map = cv2.normalize(depth_map, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)
25
- depth_img = cv2.resize(depth_map, (128, 64))
26
-
27
- _, buffer = cv2.imencode(".jpg", depth_img)
28
- return {"depth_map": buffer.tobytes()}
 
29
 
30
- if __name__ == "__main__":
31
- import uvicorn
32
- uvicorn.run(app, host="0.0.0.0", port=7860)
 
8
 
9
  app = FastAPI()
10
 
11
+ # Load MiDaS model
12
  midas = torch.hub.load("intel-isl/MiDaS", "MiDaS_small")
13
  midas.eval()
14
+ transform = T.Compose([T.Resize((256, 256)), T.ToTensor(),
15
+ T.Normalize(mean=[0.485, 0.456, 0.406],
16
+ std=[0.229, 0.224, 0.225])])
17
 
18
  @app.post("/upload/")
19
  async def upload_image(file: UploadFile = File(...)):
20
+ try:
21
+ image_bytes = await file.read() # ✔️ Đọc ảnh nhị phân
22
+ image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
23
+ print("📷 Ảnh nhận được, kích thước:", image.size)
24
 
25
+ # Chuyển đổi ảnh sang tensor
26
+ img_tensor = transform(image).unsqueeze(0)
27
+ with torch.no_grad():
28
+ depth_map = midas(img_tensor).squeeze().cpu().numpy()
29
 
30
+ # Chuẩn hóa depth map
31
+ depth_map = cv2.normalize(depth_map, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)
32
+ depth_resized = cv2.resize(depth_map, (128, 64))
33
+
34
+ _, buffer = cv2.imencode(".jpg", depth_resized)
35
+ print("✅ Depth Map đã được tạo!")
36
 
37
+ return {"depth_map": buffer.tobytes()} # ✔️ Gửi ảnh dạng nhị phân
38
+
39
+ except Excep