|
import io |
|
import time |
|
import numpy as np |
|
import cv2 |
|
import torch |
|
from transformers import DPTFeatureExtractor, DPTForDepthEstimation |
|
from fastapi import FastAPI, File, UploadFile, Response |
|
from fastapi.responses import FileResponse |
|
from PIL import Image |
|
import uvicorn |
|
|
|
app = FastAPI() |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-swinv2-tiny-256") |
|
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-swinv2-tiny-256").to(device) |
|
model.eval() |
|
|
|
@app.post("/analyze_path/") |
|
async def analyze_path(file: UploadFile = File(...)): |
|
"""Xử lý ảnh Depth Map và lưu ảnh để hiển thị""" |
|
start_time = time.time() |
|
|
|
|
|
image_bytes = await file.read() |
|
image = Image.open(io.BytesIO(image_bytes)).convert("RGB") |
|
|
|
|
|
image = image.resize((256, 256)) |
|
image_np = np.array(image) |
|
flipped_image = cv2.flip(image_np, -1) |
|
|
|
|
|
inputs = feature_extractor(images=flipped_image, return_tensors="pt").to(device) |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
|
|
|
|
predicted_depth = outputs.predicted_depth.squeeze().cpu().numpy() |
|
depth_map = (predicted_depth * 255 / predicted_depth.max()).astype("uint8") |
|
|
|
|
|
depth_colored = cv2.applyColorMap(depth_map, cv2.COLORMAP_INFERNO) |
|
depth_pil = Image.fromarray(depth_colored) |
|
|
|
|
|
depth_pil.save("depth_map.png") |
|
|
|
end_time = time.time() |
|
print(f"⏳ DPT xử lý trong {end_time - start_time:.4f} giây") |
|
|
|
return {"message": "Depth Map processed successfully. View at /depth_map/"} |
|
|
|
@app.get("/depth_map/") |
|
async def get_depth_map(): |
|
"""Trả về ảnh Depth Map để hiển thị trên trình duyệt""" |
|
return FileResponse("depth_map.png", media_type="image/png") |
|
|
|
|
|
if __name__ == "__main__": |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |
|
|