import gradio as gr from transformers import DPTFeatureExtractor, DPTForDepthEstimation import torch import numpy as np from PIL import Image from pathlib import Path # Load model and feature extractor feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large") model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") model.eval() def process_image(image): # Chuẩn hóa ảnh đầu vào encoding = feature_extractor(image, return_tensors="pt") # Forward qua model with torch.no_grad(): outputs = model(**encoding) predicted_depth = outputs.predicted_depth # Resize output về đúng kích thước ảnh gốc prediction = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1), size=image.size[::-1], # (H, W) mode="bicubic", align_corners=False ).squeeze() # Chuyển thành ảnh uint8 output = prediction.cpu().numpy() formatted = (output * 255 / np.max(output)).astype('uint8') img = Image.fromarray(formatted) return img # Interface title = "Demo: Zero-shot Depth Estimation with DPT" description = "Intel's DPT: Dense Prediction Transformer for depth estimation from a single image." iface = gr.Interface( fn=process_image, inputs=gr.inputs.Image(type="pil", label="Input Image"), outputs=predicted_depth, title=title, description=description, allow_flagging="never" ) iface.launch(debug=True)