SOAP_temp / Gpt4oDemo.py
adiv07's picture
Update Gpt4oDemo.py
6fc0784 verified
raw
history blame
18.5 kB
import gradio as gr
import plotly.graph_objs as go
import numpy as np
import time
from openai import OpenAI
import os
from hardCodedData import *
from Helper import *
import cv2
from moviepy.editor import VideoFileClip
import time
import base64
import whisperx
import gc
from moviepy.editor import VideoFileClip
from dotenv import load_dotenv
load_dotenv()
'''
Model Information
GPT4o
'''
import openai
api_key = os.getenv("OPENAI_API_KEY")
client = openai.OpenAI(
api_key=api_key,
base_url="https://openai.gateway.salt-lab.org/v1",
)
MODEL="gpt-4o"
# Whisperx config
device = "cpu"
batch_size = 16 # reduce if low on GPU mem
compute_type = "int8" # change to "int8" if low on GPU mem (may reduce accuracy)
from faster_whisper.transcribe import TranscriptionOptions
# Initialize TranscriptionOptions with the required arguments
default_asr_options = TranscriptionOptions(
beam_size=5,
best_of=5,
patience=0.0,
length_penalty=1.0,
repetition_penalty=1.0,
no_repeat_ngram_size=0,
log_prob_threshold=-1.0,
no_speech_threshold=0.6,
compression_ratio_threshold=2.4,
condition_on_previous_text=True,
prompt_reset_on_temperature=True,
temperatures=[0.0],
initial_prompt=None,
prefix=None,
suppress_blank=True,
suppress_tokens=[],
without_timestamps=False,
max_initial_timestamp=1.0,
word_timestamps=False,
prepend_punctuations="\"'“¿([{-",
append_punctuations="\"'.。,,!!??::”)]}、",
max_new_tokens=512,
clip_timestamps=True,
hallucination_silence_threshold=0.5
)
# Load the model using whisperx.load_model
model = whisperx.load_model("large-v2", device, compute_type=compute_type)
'''
Video
'''
video_file = None
audio_path=None
base64Frames = []
transcript='''Dialogue: and let's say you say well first this big guy came and got us out of class to learn how to tell stories and we were sitting in the classroom.
start: 0
end: 8
Dialogue: I was sitting in the classroom with Jared, Jared, and Jacob when all of a sudden, it's about those words, all of a sudden a grizzly bear walked through the door.
start: 9
end: 20
Dialogue: Would that be a problem?
start: 22
end: 23
Dialogue: Yeah.
start: 23
end: 25
Dialogue: Okay.
start: 25
end: 26
Dialogue: Would that be our
start: 26
end: 27
Dialogue: Yeah, so what's our takeoff in that story?
start: 28
end: 30
'''
def process_video(video_path, seconds_per_frame=2):
global base64Frames, audio_path
base_video_path, _ = os.path.splitext(video_path)
video = cv2.VideoCapture(video_path)
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
fps = video.get(cv2.CAP_PROP_FPS)
frames_to_skip = int(fps * seconds_per_frame)
curr_frame=0
while curr_frame < total_frames - 1:
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
success, frame = video.read()
if not success:
break
_, buffer = cv2.imencode(".jpg", frame)
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
curr_frame += frames_to_skip
video.release()
audio_path = "./TEST.mp3"
clip = VideoFileClip(video_path)
clip.audio.write_audiofile(audio_path, bitrate="32k")
clip.audio.close()
clip.close()
# transcribe_video(audio_path)
print(f"Extracted {len(base64Frames)} frames")
print(f"Extracted audio to {audio_path}")
return base64Frames, audio_path
chat_history = []
# chat_history.append({
# "role": "system",
# "content": (
# """
# You are an assistant chatbot for a Speech Language Pathologist (SLP).
# Your task is to help analyze a provided video of a therapy session and answer questions accurately.
# Provide timestamps for specific events or behaviors mentioned. Conclude each response with possible follow-up questions.
# Follow these steps:
# 1. Suggest to the user to ask, “To get started, you can try asking me how many people there are in the video.”
# 2. Detect how many people are in the video.
# 2. Suggest to the user to tell you the names of the people in the video, starting from left to right.
# 3. After receiving the names, respond with, “Ok thank you! Now you can ask me any questions about this video.”
# 4. If the user asks about a behavior, respond with, “My understanding of this behavior is [xxx - AI generated output]. Is this a behavior that you want to track? If it is, please define this behavior and tell me more about it so I can analyze it more accurately according to your practice.”
# 5. If you receive names, confirm that these are the names of the people from left to right.
# """
# )
# })
def transcribe_video(filename):
global transcript
if not audio_path:
raise ValueError("Audio path is None")
print(audio_path)
audio = whisperx.load_audio(audio_path)
result = model.transcribe(audio, batch_size=batch_size)
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
result = whisperx.align(result["segments"], model_a, metadata, audio, device, return_char_alignments=False)
hf_auth_token = os.getenv("HF_AUTH_TOKEN")
diarize_model = whisperx.DiarizationPipeline(use_auth_token=hf_auth_token, device=device)
diarize_segments = diarize_model(audio)
dia_result = whisperx.assign_word_speakers(diarize_segments, result)
for res in dia_result["segments"]:
# transcript += "Speaker: " + str(res.get("speaker", None)) + "\n"
transcript += "Dialogue: " + str(res["text"].lstrip()) + "\n"
transcript += "start: " + str(int(res["start"])) + "\n"
transcript += "end: " + str(int(res["end"])) + "\n"
transcript += "\n"
return transcript
def handle_video(video=None):
global video_file, base64Frames, audio_path, chat_history, transcript
if video is None:
# Load example video
video = "./TEST.mp4"
base64Frames, audio_path = process_video(video_path=video, seconds_per_frame=100)
chat_history.append({
"role": "user",
"content": [
{"type": "text", "text": "These are the frames from the video."},
*map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames)
]
})
if transcript:
chat_history[-1]['content'].append({
"type": "text",
"text": "Also, below is the template of transcript from the video:\n"
"Speaker: <the speaker of the dialogue>\n"
"Dialogue: <the text of the dialogue>\n"
"start: <the starting timestamp of the dialogue in the video in second>\n"
"end: <the ending timestamp of the dialogue in the video in second>\n"
f"Transcription: {transcript}"
})
video_file = video
return video_file
'''
Chatbot
'''
def new_prompt(prompt):
global chat_history, video_file
chat_history.append({"role": "user","content": prompt,})
MODEL="gpt-4o"
print(chat_history)
# print(transcript)
try:
if video_file:
# Video exists and is processed
response = client.chat.completions.create(model=MODEL,messages=chat_history,temperature=0,)
else:
# No video uploaded yet
response = client.chat.completions.create(model=MODEL,messages=chat_history,temperature=0,)
# Extract the text content from the response and append it to the chat history
assistant_message = response.choices[0].message.content
chat_history.append({'role': 'model', 'content': assistant_message})
print(assistant_message)
except Exception as e:
print("Error: ",e)
assistant_message = "API rate limit has been reached. Please wait a moment and try again."
chat_history.append({'role': 'model', 'content': assistant_message})
# except google.api_core.exceptions.ResourceExhausted:
# assistant_message = "API rate limit has been reached. Please wait a moment and try again."
# chat_history.append({'role': 'model', 'parts': [assistant_message]})
# except Exception as e:
# assistant_message = f"An error occurred: {str(e)}"
# chat_history.append({'role': 'model', 'parts': [assistant_message]})
return chat_history
def user_input(user_message, history):
return "", history + [[user_message, None]]
def bot_response(history):
user_message = history[-1][0]
updated_history = new_prompt(user_message)
assistant_message = updated_history[-1]['content']
history[-1][1] = assistant_message
yield history
'''
Behaivor box
'''
initial_behaviors = [
("Initiating Behavioral Request (IBR)",
("The child's skill in using behavior(s) to elicit aid in obtaining an object, or object related event",
["00:10", "00:45", "01:30"])),
("Initiating Joint Attention (IJA)",
("The child's skill in using behavior(s) to initiate shared attention to objects or events.",
["00:15", "00:50", "01:40"])),
("Responding to Joint Attention (RJA)",
("The child's skill in following the examiner’s line of regard and pointing gestures.",
["00:20", "01:00", "02:00"])),
("Initiating Social Interaction (ISI)",
("The child's skill at initiating turn-taking sequences and the tendency to tease the tester",
["00:20", "00:50", "02:00"])),
("Responding to Social Interaction (RSI)",
("The child’s skill in responding to turn-taking interactions initiated by the examiner.",
["00:20", "01:00", "02:00"]))
]
behaviors = initial_behaviors
behavior_bank = []
def add_or_update_behavior(name, definition, timestamps, selected_behavior):
global behaviors, behavior_bank
if selected_behavior: # Update existing behavior
for i, (old_name, _) in enumerate(behaviors):
if old_name == selected_behavior:
behaviors[i] = (name, (definition, timestamps))
break
# Update behavior in the bank if it exists
behavior_bank = [name if b == selected_behavior else b for b in behavior_bank]
else: # Add new behavior
new_behavior = (name, (definition, timestamps))
behaviors.append(new_behavior)
choices = [b[0] for b in behaviors]
return gr.Dropdown(choices=choices, value=None, interactive=True), gr.CheckboxGroup(choices=behavior_bank, value=behavior_bank, interactive=True), "", "", ""
def add_to_behaivor_bank(selected_behavior, checkbox_group_values):
global behavior_bank
if selected_behavior and selected_behavior not in checkbox_group_values:
checkbox_group_values.append(selected_behavior)
behavior_bank = checkbox_group_values
return gr.CheckboxGroup(choices=checkbox_group_values, value=checkbox_group_values, interactive=True), gr.Dropdown(value=None,interactive=True)
def delete_behavior(selected_behavior, checkbox_group_values):
global behaviors, behavior_bank
behaviors = [b for b in behaviors if b[0] != selected_behavior]
behavior_bank = [b for b in behavior_bank if b != selected_behavior]
updated_choices = [b[0] for b in behaviors]
updated_checkbox_group = [cb for cb in checkbox_group_values if cb != selected_behavior]
return gr.Dropdown(choices=updated_choices, value=None, interactive=True), gr.CheckboxGroup(choices=updated_checkbox_group, value=updated_checkbox_group, interactive=True)
def edit_behavior(selected_behavior):
for name, (definition, timestamps) in behaviors:
if name == selected_behavior:
# Return values to populate textboxes
return name, definition, timestamps
return "", "", ""
welcome_message = """
Hello! I'm your AI assistant.
I can help you analyze your video sessions following your instructions.
To get started, please upload a video or add your behaviors to the Behavior Bank using the Behavior Manager.
"""
#If you want to tell me about the people in the video, please name them starting from left to right.
css="""
body {
background-color: #edf1fa; /* offwhite */
}
.gradio-container {
background-color: #edf1fa; /* offwhite */
}
.column-form .wrap {
flex-direction: column;
}
.sidebar {
background: #ffffff;
padding: 10px;
border-right: 1px solid #dee2e6;
}
.content {
padding: 10px;
}
"""
'''
Gradio Demo
'''
with gr.Blocks(theme='base', css=css, title="Soap.AI") as demo:
gr.Markdown("# 🤖 AI-Supported SOAP Generation")
with gr.Row():
with gr.Column():
video = gr.Video(label="Video", visible=True, height=360, container=True)
with gr.Row():
with gr.Column(min_width=1, scale=1):
video_upload_button = gr.Button("Analyze Video", variant="primary")
with gr.Column(min_width=1, scale=1):
example_video_button = gr.Button("Load Example Video")
video_upload_button.click(handle_video, inputs=video, outputs=video)
example_video_button.click(handle_video, None, outputs=video)
with gr.Column():
chat_section = gr.Group(visible=True)
with chat_section:
chatbot = gr.Chatbot(elem_id="chatbot",
container=True,
likeable=True,
value=[[None, welcome_message]],
avatar_images=(None, "./avatar.webp"))
with gr.Row():
txt = gr.Textbox(show_label=False, placeholder="Type here!")
with gr.Row():
send_btn = gr.Button("Send Message", elem_id="send-btn", variant="primary")
clear_btn = gr.Button("Clear Chat", elem_id="clear-btn")
with gr.Row():
behaivor_bank = gr.CheckboxGroup(label="Behavior Bank",
choices=[],
interactive=True,
info="A space to store all the behaviors you want to analyze.")
open_sidebar_btn = gr.Button("Show Behavior Manager", scale=0)
close_sidebar_btn = gr.Button("Hide Behavior Manager", visible=False, scale=0)
txt.submit(user_input, [txt, chatbot], [txt, chatbot], queue=False).then(
bot_response, chatbot, chatbot)
send_btn.click(user_input, [txt, chatbot], [txt, chatbot], queue=False).then(
bot_response, chatbot, chatbot)
clear_btn.click(lambda: None, None, chatbot, queue=False)
# Define a sidebar column that is initially hidden
with gr.Column(visible=False, min_width=200, scale=0.5, elem_classes="sidebar") as sidebar:
behavior_dropdown = gr.Dropdown(label="Behavior Collection",
choices=behaviors,
interactive=True,
container=True,
elem_classes="column-form",
info="Choose a behavior to add to the bank, edit or remove.")
with gr.Row():
add_toBank_button = gr.Button("Add Behavior to Bank", variant="primary")
edit_button = gr.Button("Edit Behavior")
delete_button = gr.Button("Remove Behavior")
with gr.Row():
name_input = gr.Textbox(label="Behavior Name",
placeholder="(e.g., IBR)",
info="The name you give to the specific behavior you're tracking or analyzing.")
timestamps_input = gr.Textbox(label="Timestamps MM:SS",
placeholder="(e.g., (01:15,01:35) )",
info="The exact times during a session when you saw the behavior. The first two digits represent minutes and the last two digits represent seconds.")
definition_input = gr.Textbox(lines=3,
label="Behavior Definition",
placeholder="(e.g., the child's skill in using behavior(s) to elicit aid in obtaining an object, or object related event)",
info="Provide a clear definition of the behavior.")
with gr.Row():
submit_button = gr.Button("Save Behavior", variant="primary")
submit_button.click(fn=add_or_update_behavior,
inputs=[name_input, definition_input, timestamps_input, behavior_dropdown],
outputs=[behavior_dropdown, behaivor_bank, name_input, definition_input, timestamps_input])
add_toBank_button.click(fn=add_to_behaivor_bank,
inputs=[behavior_dropdown, behaivor_bank],
outputs=[behaivor_bank, behavior_dropdown])
delete_button.click(fn=delete_behavior,
inputs=[behavior_dropdown, behaivor_bank],
outputs=[behavior_dropdown, behaivor_bank])
edit_button.click(fn=edit_behavior,
inputs=[behavior_dropdown],
outputs=[name_input, definition_input, timestamps_input])
# Function to open the sidebar
open_sidebar_btn.click(lambda: {
open_sidebar_btn: gr.Button(visible=False),
close_sidebar_btn: gr.Button(visible=True),
sidebar: gr.Column(visible=True)
}, outputs=[open_sidebar_btn, close_sidebar_btn, sidebar])
# Function to close the sidebar
close_sidebar_btn.click(lambda: {
open_sidebar_btn: gr.Button(visible=True),
close_sidebar_btn: gr.Button(visible=False),
sidebar: gr.Column(visible=False)
}, outputs=[open_sidebar_btn, close_sidebar_btn, sidebar])
# Launch the demo
demo.launch(share=True)