File size: 17,871 Bytes
6a981b2
 
 
 
 
 
 
 
 
 
 
 
 
 
2c2c3fc
6a981b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60eb264
6a981b2
 
c02df54
 
 
 
ade0f3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e30b192
 
 
 
c02df54
 
 
 
6a981b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60eb264
6a981b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d82b61
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
import gradio as gr
import plotly.graph_objs as go
import numpy as np
import time
from openai import OpenAI
import os
from hardCodedData import *
from Helper import *
import cv2
from moviepy.editor import VideoFileClip
import time
import base64
import whisperx
import gc 
from moviepy.editor import VideoFileClip
from dotenv import load_dotenv

load_dotenv()

'''
Model Information 
GPT4o
'''

import openai
api_key = os.getenv("OPENAI_API_KEY")
client = openai.OpenAI(
    api_key=api_key,
    base_url="https://openai.gateway.salt-lab.org/v1",
)
MODEL="gpt-4o"

# Whisperx config
device = "cuda" 
batch_size = 16 # reduce if low on GPU mem
compute_type = "int8" # change to "int8" if low on GPU mem (may reduce accuracy)
from faster_whisper.transcribe import TranscriptionOptions

# Initialize TranscriptionOptions with the required arguments
default_asr_options = TranscriptionOptions(
    beam_size=5,
    best_of=5,
    patience=0.0,
    length_penalty=1.0,
    repetition_penalty=1.0,
    no_repeat_ngram_size=0,
    log_prob_threshold=-1.0,
    no_speech_threshold=0.6,
    compression_ratio_threshold=2.4,
    condition_on_previous_text=True,
    prompt_reset_on_temperature=True,
    temperatures=[0.0],
    initial_prompt=None,
    prefix=None,
    suppress_blank=True,
    suppress_tokens=[],
    without_timestamps=False,
    max_initial_timestamp=1.0,
    word_timestamps=False,
    prepend_punctuations="\"'“¿([{-",
    append_punctuations="\"'.。,,!!??::”)]}、",
    max_new_tokens=512,
    clip_timestamps=True,
    hallucination_silence_threshold=0.5
)

# Load the model using whisperx.load_model
model = whisperx.load_model("large-v2", device, compute_type=compute_type)
'''
Video
'''
video_file = None
audio_path=None
base64Frames = []
transcript=""

def process_video(video_path, seconds_per_frame=2):
    global base64Frames, audio_path
    base_video_path, _ = os.path.splitext(video_path)

    video = cv2.VideoCapture(video_path)
    total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = video.get(cv2.CAP_PROP_FPS)
    frames_to_skip = int(fps * seconds_per_frame)
    curr_frame=0

    while curr_frame < total_frames - 1:
        video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
        success, frame = video.read()
        if not success:
            break
        _, buffer = cv2.imencode(".jpg", frame)
        base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
        curr_frame += frames_to_skip
    video.release()

    audio_path = "./TEST.mp3"
    clip = VideoFileClip(video_path)
    clip.audio.write_audiofile(audio_path, bitrate="32k")
    clip.audio.close()
    clip.close()
    transcribe_video(audio_path)
    print(f"Extracted {len(base64Frames)} frames")
    print(f"Extracted audio to {audio_path}")
    return base64Frames, audio_path

chat_history = []
# chat_history.append({
#             "role": "system",
#             "content": (
#                     """
#                         You are an assistant chatbot for a Speech Language Pathologist (SLP). 
#                         Your task is to help analyze a provided video of a therapy session and answer questions accurately. 
#                         Provide timestamps for specific events or behaviors mentioned. Conclude each response with possible follow-up questions.

#                         Follow these steps:

#                         1.	Suggest to the user to ask, “To get started, you can try asking me how many people there are in the video.”
#                         2.  Detect how many people are in the video.
#                         2.	Suggest to the user to tell you the names of the people in the video, starting from left to right.
#                         3.	After receiving the names, respond with, “Ok thank you! Now you can ask me any questions about this video.”
#                         4.	If the user asks about a behavior, respond with, “My understanding of this behavior is [xxx - AI generated output]. Is this a behavior that you want to track? If it is, please define this behavior and tell me more about it so I can analyze it more accurately according to your practice.”
#                         5.	If you receive names, confirm that these are the names of the people from left to right.
#                     """
#             )
#         })

def transcribe_video(filename):
    global transcript
    if not audio_path:
        raise ValueError("Audio path is None")
    print(audio_path)
    audio = whisperx.load_audio(audio_path)
    result = model.transcribe(audio, batch_size=batch_size)

    model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
    result = whisperx.align(result["segments"], model_a, metadata, audio, device, return_char_alignments=False)


    hf_auth_token = os.getenv("HF_AUTH_TOKEN")
    diarize_model = whisperx.DiarizationPipeline(use_auth_token=hf_auth_token, device=device)

    diarize_segments = diarize_model(audio)

    dia_result = whisperx.assign_word_speakers(diarize_segments, result)

    for res in dia_result["segments"]:
        # transcript += "Speaker: " + str(res.get("speaker", None)) + "\n"
        transcript += "Dialogue: " + str(res["text"].lstrip()) + "\n"
        transcript += "start: " + str(int(res["start"])) + "\n"
        transcript += "end: " + str(int(res["end"])) + "\n"
        transcript += "\n"

    return transcript


def handle_video(video=None):
    global video_file, base64Frames, audio_path, chat_history, transcript
    
    if video is None:
        # Load example video
        video = "./TEST.mp4"
   
    base64Frames, audio_path = process_video(video_path=video, seconds_per_frame=100)
    chat_history.append({
        "role": "user",
        "content": [
            {"type": "text", "text": "These are the frames from the video."},
            *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames)
        ]
    })

    if transcript:
        chat_history[-1]['content'].append({
            "type": "text", 
            "text": f"Also, below is the template of transcript from the video:\n"
                    "Speaker: <the speaker of the dialogue>\n"
                    "Dialogue: <the text of the dialogue>\n"
                    "start: <the starting timestamp of the dialogue in the video in second>\n"
                    "end: <the ending timestamp of the dialogue in the video in second>\n"
                    f"Transcription: {transcript}"
        })

    video_file = video
    return video_file

'''
Chatbot
'''

def new_prompt(prompt):
    global chat_history, video_file
    chat_history.append({"role": "user","content": prompt,})
    MODEL="gpt-4o"
    # print(chat_history)
    print(transcript)
    try:
        if video_file:
            # Video exists and is processed
            response = client.chat.completions.create(model=MODEL,messages=chat_history,temperature=0,)
        else:
            # No video uploaded yet
            response = client.chat.completions.create(model=MODEL,messages=chat_history,temperature=0,)

        # Extract the text content from the response and append it to the chat history
        assistant_message = response.choices[0].message.content
        chat_history.append({'role': 'model', 'content': assistant_message})
        print(assistant_message)
    except Exception as e:
        print("Error: ",e)
        assistant_message = "API rate limit has been reached. Please wait a moment and try again."
        chat_history.append({'role': 'model', 'content': assistant_message})

    # except google.api_core.exceptions.ResourceExhausted:
    #     assistant_message = "API rate limit has been reached. Please wait a moment and try again."
    #     chat_history.append({'role': 'model', 'parts': [assistant_message]})
    # except Exception as e:
    #     assistant_message = f"An error occurred: {str(e)}"
    #     chat_history.append({'role': 'model', 'parts': [assistant_message]})

    return chat_history

def user_input(user_message, history):
    return "", history + [[user_message, None]]

def bot_response(history):
    user_message = history[-1][0]
    updated_history = new_prompt(user_message)
    assistant_message = updated_history[-1]['content']
    history[-1][1] = assistant_message
    yield history


'''
Behaivor box
'''
initial_behaviors = [
    ("Initiating Behavioral Request (IBR)", 
    ("The child's skill in using behavior(s) to elicit aid in obtaining an object, or object related event", 
    ["00:10", "00:45", "01:30"])),

    ("Initiating Joint Attention (IJA)", 
    ("The child's skill in using behavior(s) to initiate shared attention to objects or events.", 
    ["00:15", "00:50", "01:40"])),

    ("Responding to Joint Attention (RJA)", 
    ("The child's skill in following the examiner’s line of regard and pointing gestures.", 
    ["00:20", "01:00", "02:00"])),

    ("Initiating Social Interaction (ISI)", 
    ("The child's skill at initiating turn-taking sequences and the tendency to tease the tester", 
    ["00:20", "00:50", "02:00"])),

    ("Responding to Social Interaction (RSI)", 
    ("The child’s skill in responding to turn-taking interactions initiated by the examiner.", 
    ["00:20", "01:00", "02:00"]))
]

behaviors = initial_behaviors
behavior_bank = []

def add_or_update_behavior(name, definition, timestamps, selected_behavior):
    global behaviors, behavior_bank
    if selected_behavior:  # Update existing behavior
        for i, (old_name, _) in enumerate(behaviors):
            if old_name == selected_behavior:
                behaviors[i] = (name, (definition, timestamps))
                break
        # Update behavior in the bank if it exists
        behavior_bank = [name if b == selected_behavior else b for b in behavior_bank]
    else:  # Add new behavior
        new_behavior = (name, (definition, timestamps))
        behaviors.append(new_behavior)
    choices = [b[0] for b in behaviors]
    return gr.Dropdown(choices=choices, value=None, interactive=True), gr.CheckboxGroup(choices=behavior_bank, value=behavior_bank, interactive=True), "", "", ""

def add_to_behaivor_bank(selected_behavior, checkbox_group_values):
    global behavior_bank
    if selected_behavior and selected_behavior not in checkbox_group_values:
        checkbox_group_values.append(selected_behavior)
    behavior_bank = checkbox_group_values
    return gr.CheckboxGroup(choices=checkbox_group_values, value=checkbox_group_values, interactive=True), gr.Dropdown(value=None,interactive=True)

def delete_behavior(selected_behavior, checkbox_group_values):
    global behaviors, behavior_bank
    behaviors = [b for b in behaviors if b[0] != selected_behavior]
    behavior_bank = [b for b in behavior_bank if b != selected_behavior]
    updated_choices = [b[0] for b in behaviors]
    updated_checkbox_group = [cb for cb in checkbox_group_values if cb != selected_behavior]
    return gr.Dropdown(choices=updated_choices, value=None, interactive=True), gr.CheckboxGroup(choices=updated_checkbox_group, value=updated_checkbox_group, interactive=True)

def edit_behavior(selected_behavior):
    for name, (definition, timestamps) in behaviors:
        if name == selected_behavior:
            # Return values to populate textboxes
            return name, definition, timestamps
    return "", "", ""


welcome_message = """
Hello! I'm your AI assistant.
I can help you analyze your video sessions following your instructions.
To get started, please upload a video or add your behaviors to the Behavior Bank using the Behavior Manager.
"""
#If you want to tell me about the people in the video, please name them starting from left to right.

css="""
    body {
        background-color: #edf1fa; /* offwhite */
    }
    .gradio-container {
        background-color: #edf1fa; /* offwhite */
    }
    .column-form .wrap {
        flex-direction: column;
    }
    .sidebar {
        background: #ffffff; 
        padding: 10px; 
        border-right: 1px solid #dee2e6;
    }
    .content {
        padding: 10px;
    }
"""

'''
Gradio Demo
'''
with gr.Blocks(theme='base', css=css, title="Soap.AI") as demo:
    gr.Markdown("# 🤖 AI-Supported SOAP Generation")

    with gr.Row():
        with gr.Column():
            video = gr.Video(label="Video", visible=True, height=360, container=True)
            with gr.Row():
                with gr.Column(min_width=1, scale=1):
                    video_upload_button = gr.Button("Analyze Video", variant="primary")
                with gr.Column(min_width=1, scale=1):
                    example_video_button = gr.Button("Load Example Video")

            video_upload_button.click(handle_video, inputs=video, outputs=video)
            example_video_button.click(handle_video, None, outputs=video)

        with gr.Column():
            chat_section = gr.Group(visible=True)
            with chat_section:
                chatbot = gr.Chatbot(elem_id="chatbot", 
                                     container=True, 
                                     likeable=True, 
                                     value=[[None, welcome_message]],
                                     avatar_images=(None, "./avatar.webp"))
                with gr.Row():
                    txt = gr.Textbox(show_label=False, placeholder="Type here!")
            with gr.Row():
                send_btn = gr.Button("Send Message", elem_id="send-btn", variant="primary")
                clear_btn = gr.Button("Clear Chat", elem_id="clear-btn")
            
            with gr.Row():
                behaivor_bank = gr.CheckboxGroup(label="Behavior Bank", 
                                                 choices=[], 
                                                 interactive=True,
                                                 info="A space to store all the behaviors you want to analyze.")
                open_sidebar_btn = gr.Button("Show Behavior Manager", scale=0)
                close_sidebar_btn = gr.Button("Hide Behavior Manager", visible=False, scale=0)

            txt.submit(user_input, [txt, chatbot], [txt, chatbot], queue=False).then(
                bot_response, chatbot, chatbot)
            send_btn.click(user_input, [txt, chatbot], [txt, chatbot], queue=False).then(
                bot_response, chatbot, chatbot)
            clear_btn.click(lambda: None, None, chatbot, queue=False)
            
        # Define a sidebar column that is initially hidden
        with gr.Column(visible=False, min_width=200, scale=0.5, elem_classes="sidebar") as sidebar:
            behavior_dropdown = gr.Dropdown(label="Behavior Collection",
                                            choices=behaviors, 
                                            interactive=True,
                                            container=True,
                                            elem_classes="column-form",
                                            info="Choose a behavior to add to the bank, edit or remove.")
            with gr.Row():
                add_toBank_button = gr.Button("Add Behavior to Bank", variant="primary")
                edit_button = gr.Button("Edit Behavior")
                delete_button = gr.Button("Remove Behavior")

            with gr.Row():
                name_input = gr.Textbox(label="Behavior Name", 
                                        placeholder="(e.g., IBR)",
                                        info="The name you give to the specific behavior you're tracking or analyzing.")
                timestamps_input = gr.Textbox(label="Timestamps MM:SS", 
                                              placeholder="(e.g., (01:15,01:35) )",
                                              info="The exact times during a session when you saw the behavior. The first two digits represent minutes and the last two digits represent seconds.")
                definition_input = gr.Textbox(lines=3,
                                              label="Behavior Definition", 
                                              placeholder="(e.g., the child's skill in using behavior(s) to elicit aid in obtaining an object, or object related event)",
                                              info="Provide a clear definition of the behavior.")

            with gr.Row():
                submit_button = gr.Button("Save Behavior", variant="primary")

    submit_button.click(fn=add_or_update_behavior, 
                    inputs=[name_input, definition_input, timestamps_input, behavior_dropdown], 
                    outputs=[behavior_dropdown, behaivor_bank, name_input, definition_input, timestamps_input])

    add_toBank_button.click(fn=add_to_behaivor_bank, 
                            inputs=[behavior_dropdown, behaivor_bank], 
                            outputs=[behaivor_bank, behavior_dropdown])

    delete_button.click(fn=delete_behavior, 
                        inputs=[behavior_dropdown, behaivor_bank], 
                        outputs=[behavior_dropdown, behaivor_bank])

    edit_button.click(fn=edit_behavior, 
                    inputs=[behavior_dropdown], 
                    outputs=[name_input, definition_input, timestamps_input])
        
    # Function to open the sidebar
    open_sidebar_btn.click(lambda: {
        open_sidebar_btn: gr.Button(visible=False),
        close_sidebar_btn: gr.Button(visible=True),
        sidebar: gr.Column(visible=True)
    }, outputs=[open_sidebar_btn, close_sidebar_btn, sidebar])

    # Function to close the sidebar
    close_sidebar_btn.click(lambda: {
        open_sidebar_btn: gr.Button(visible=True),
        close_sidebar_btn: gr.Button(visible=False),
        sidebar: gr.Column(visible=False)
    }, outputs=[open_sidebar_btn, close_sidebar_btn, sidebar])

# Launch the demo
demo.launch(share=True)