Spaces:
Sleeping
Sleeping
File size: 4,803 Bytes
3307721 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import json
from uuid import uuid4
from open_webui.utils.misc import (
openai_chat_chunk_message_template,
openai_chat_completion_message_template,
)
def convert_response_ollama_to_openai(ollama_response: dict) -> dict:
model = ollama_response.get("model", "ollama")
message_content = ollama_response.get("message", {}).get("content", "")
data = ollama_response
usage = {
"response_token/s": (
round(
(
(
data.get("eval_count", 0)
/ ((data.get("eval_duration", 0) / 10_000_000))
)
* 100
),
2,
)
if data.get("eval_duration", 0) > 0
else "N/A"
),
"prompt_token/s": (
round(
(
(
data.get("prompt_eval_count", 0)
/ ((data.get("prompt_eval_duration", 0) / 10_000_000))
)
* 100
),
2,
)
if data.get("prompt_eval_duration", 0) > 0
else "N/A"
),
"total_duration": data.get("total_duration", 0),
"load_duration": data.get("load_duration", 0),
"prompt_eval_count": data.get("prompt_eval_count", 0),
"prompt_eval_duration": data.get("prompt_eval_duration", 0),
"eval_count": data.get("eval_count", 0),
"eval_duration": data.get("eval_duration", 0),
"approximate_total": (lambda s: f"{s // 3600}h{(s % 3600) // 60}m{s % 60}s")(
(data.get("total_duration", 0) or 0) // 1_000_000_000
),
}
response = openai_chat_completion_message_template(model, message_content, usage)
return response
async def convert_streaming_response_ollama_to_openai(ollama_streaming_response):
async for data in ollama_streaming_response.body_iterator:
data = json.loads(data)
model = data.get("model", "ollama")
message_content = data.get("message", {}).get("content", "")
tool_calls = data.get("message", {}).get("tool_calls", None)
openai_tool_calls = None
if tool_calls:
openai_tool_calls = []
for tool_call in tool_calls:
openai_tool_call = {
"index": tool_call.get("index", 0),
"id": tool_call.get("id", f"call_{str(uuid4())}"),
"type": "function",
"function": {
"name": tool_call.get("function", {}).get("name", ""),
"arguments": f"{tool_call.get('function', {}).get('arguments', {})}",
},
}
openai_tool_calls.append(openai_tool_call)
done = data.get("done", False)
usage = None
if done:
usage = {
"response_token/s": (
round(
(
(
data.get("eval_count", 0)
/ ((data.get("eval_duration", 0) / 10_000_000))
)
* 100
),
2,
)
if data.get("eval_duration", 0) > 0
else "N/A"
),
"prompt_token/s": (
round(
(
(
data.get("prompt_eval_count", 0)
/ ((data.get("prompt_eval_duration", 0) / 10_000_000))
)
* 100
),
2,
)
if data.get("prompt_eval_duration", 0) > 0
else "N/A"
),
"total_duration": data.get("total_duration", 0),
"load_duration": data.get("load_duration", 0),
"prompt_eval_count": data.get("prompt_eval_count", 0),
"prompt_eval_duration": data.get("prompt_eval_duration", 0),
"eval_count": data.get("eval_count", 0),
"eval_duration": data.get("eval_duration", 0),
"approximate_total": (
lambda s: f"{s // 3600}h{(s % 3600) // 60}m{s % 60}s"
)((data.get("total_duration", 0) or 0) // 1_000_000_000),
}
data = openai_chat_chunk_message_template(
model, message_content if not done else None, openai_tool_calls, usage
)
line = f"data: {json.dumps(data)}\n\n"
yield line
yield "data: [DONE]\n\n"
|