File size: 5,589 Bytes
f4c3c2b
 
 
 
 
 
 
 
 
 
 
 
27fc598
 
f4c3c2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27fc598
f4c3c2b
27fc598
 
f4c3c2b
27fc598
 
 
f4c3c2b
 
 
 
 
 
 
 
 
 
 
 
27fc598
f4c3c2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27fc598
 
 
f4c3c2b
27fc598
 
 
f4c3c2b
27fc598
 
 
 
 
 
 
 
 
f4c3c2b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

"""Generate images using pretrained network pickle."""

import os
import re
from typing import List

import numpy as np
import torch

from torch_utils import misc
from torch_utils import persistence
from torch_utils.ops import conv2d_resample
from torch_utils.ops import upfirdn2d
from torch_utils.ops import bias_act
from torch_utils.ops import fma


def block_forward(self, x, img, ws, shapes, force_fp32=False, fused_modconv=None, **layer_kwargs):
        misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim])
        w_iter = iter(ws.unbind(dim=1))
        dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32
        memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format
        if fused_modconv is None:
            with misc.suppress_tracer_warnings(): # this value will be treated as a constant
                fused_modconv = (not self.training) and (dtype == torch.float32 or int(x.shape[0]) == 1)

        # Input.
        if self.in_channels == 0:
            x = self.const.to(dtype=dtype, memory_format=memory_format)
            x = x.unsqueeze(0).repeat([ws.shape[0], 1, 1, 1])
        else:
            misc.assert_shape(x, [None, self.in_channels, self.resolution // 2, self.resolution // 2])
            x = x.to(dtype=dtype, memory_format=memory_format)

        # Main layers.
        if self.in_channels == 0:
            x = self.conv1(x, next(w_iter)[...,:shapes[0]], fused_modconv=fused_modconv, **layer_kwargs)
        elif self.architecture == 'resnet':
            y = self.skip(x, gain=np.sqrt(0.5))
            x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs)
            x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs)
            x = y.add_(x)
        else:
            x = self.conv0(x, next(w_iter)[...,:shapes[0]], fused_modconv=fused_modconv, **layer_kwargs)
            x = self.conv1(x, next(w_iter)[...,:shapes[1]], fused_modconv=fused_modconv, **layer_kwargs)

        # ToRGB.
        if img is not None:
            misc.assert_shape(img, [None, self.img_channels, self.resolution // 2, self.resolution // 2])
            img = upfirdn2d.upsample2d(img, self.resample_filter)
        if self.is_last or self.architecture == 'skip':
            y = self.torgb(x, next(w_iter)[...,:shapes[2]], fused_modconv=fused_modconv)
            y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format)
            img = img.add_(y) if img is not None else y

        assert x.dtype == dtype
        assert img is None or img.dtype == torch.float32
        return x, img


def unravel_index(index, shape):
    out = []
    for dim in reversed(shape):
        out.append(index % dim)
        index = index // dim
    return tuple(reversed(out))
    

def w_to_s(
    G,
    outdir: str,
    projected_w: str,
    truncation_psi: float = 0.7,
    noise_mode: str = "const",
):

    # Use GPU if available
    if torch.cuda.is_available():
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    os.makedirs(outdir, exist_ok=True)

    # Generate images.
    for i in G.parameters():
        i.requires_grad = True

    ws = np.load(projected_w)['w']
    ws = torch.tensor(ws, device=device)

    block_ws = []
    with torch.autograd.profiler.record_function('split_ws'):
        misc.assert_shape(ws, [None, G.synthesis.num_ws, G.synthesis.w_dim])
        ws = ws.to(torch.float32)

        w_idx = 0
        for res in G.synthesis.block_resolutions:
            block = getattr(G.synthesis, f'b{res}')
            block_ws.append(ws.narrow(1, w_idx, block.num_conv + block.num_torgb))
            w_idx += block.num_conv

    styles = torch.zeros(1,26,512, device=device)
    styles_idx = 0
    temp_shapes = []
    for res, cur_ws in zip(G.synthesis.block_resolutions, block_ws):
        block = getattr(G.synthesis, f'b{res}')

        if res == 4:
            temp_shape = (block.conv1.affine.weight.shape[0], block.conv1.affine.weight.shape[0], block.torgb.affine.weight.shape[0])
            styles[0,:1,:] = block.conv1.affine(cur_ws[0,:1,:])
            styles[0,1:2,:] = block.torgb.affine(cur_ws[0,1:2,:])

            block.conv1.affine = torch.nn.Identity()
            block.torgb.affine = torch.nn.Identity()
            styles_idx += 2
        else:
            temp_shape = (block.conv0.affine.weight.shape[0], block.conv1.affine.weight.shape[0], block.torgb.affine.weight.shape[0])
            styles[0,styles_idx:styles_idx+1,:temp_shape[0]] = block.conv0.affine(cur_ws[0,:1,:])
            styles[0,styles_idx+1:styles_idx+2,:temp_shape[1]] = block.conv1.affine(cur_ws[0,1:2,:])
            styles[0,styles_idx+2:styles_idx+3,:temp_shape[2]] = block.torgb.affine(cur_ws[0,2:3,:])

            block.conv0.affine = torch.nn.Identity()
            block.conv1.affine = torch.nn.Identity()
            block.torgb.affine = torch.nn.Identity()
            styles_idx += 3
        temp_shapes.append(temp_shape)

    styles = styles.detach()
    np.savez(f'{outdir}/input.npz', s=styles.cpu().numpy())