import torch , torchvision from torch import nn def create_vit_model(num_classes:int=3, seed:int=42): weights = torchvision.models.ViT_B_16_Weights.DEFAULT transforms = weights.transforms() model = torchvision.models.vit_b_16(weights= weights) for param in model.parameters(): param.requires_grad = False model.classifier = nn.Sequential( nn.Dropout(p=0.3, inplace=True), nn.Linear(in_features=1408, out_features=num_classes) ) return model , transforms