import gradio as gr import os import torch from model import create_vit_model from timeit import default_timer as timer class_names = ["pizza", "steak", "sushi"] vit , vit_transforms = create_vit_model() vit.load_state_dict(torch.load(f="09_pretrained_vit_feature_extractor_pizza_steak_sushi_20_percent.pth", map_location=torch.device("cpu"))) def predict(img): img_tranformed = vit_transforms(img).unsqueeze(0) start_time = timer() vit.eval() with torch.inference_mode(): y_pred = vit(img_tranformed) pred_time = round(timer() - start_time , 4) y_proba = torch.softmax(y_pred , dim =1) pred_dict = { class_names[i]:j for i, j in enumerate( y_proba[0]) } return pred_dict , pred_time title = "FoodVision Mini 🍕🥩🍣" description = "An VITfeature extractor computer vision model to classify images of food as pizza, steak or sushi." article = "Created at [PyTorch Model Deployment]." # Create examples list from "examples/" directory example_list = [["examples/" + example] for example in os.listdir("examples")] # Create the Gradio demo demo = gr.Interface(fn=predict, # mapping function from input to output inputs=gr.Image(type="pil"), # what are the inputs? outputs=[gr.Label(num_top_classes=3, label="Predictions"), # what are the outputs? gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs examples=example_list, title=title, description=description, article=article) # Launch the demo! demo.launch()