Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,20 +1,20 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
|
| 3 |
import os
|
| 4 |
|
| 5 |
-
#
|
| 6 |
-
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
-
def load_model(token, model_name):
|
| 13 |
-
return pipeline("audio-classification", model=model_name, use_auth_token=token)
|
| 14 |
-
|
| 15 |
-
audio_classifier = load_model(HF_TOKEN, model_name)
|
| 16 |
-
|
| 17 |
-
# Pre-uploaded audio files
|
| 18 |
audio_files = {
|
| 19 |
"Labrador Barking": "labrador-barking.mp3",
|
| 20 |
"Tolling Bell": "tolling-bell.mp3",
|
|
@@ -25,23 +25,22 @@ audio_files = {
|
|
| 25 |
}
|
| 26 |
|
| 27 |
# Streamlit UI
|
| 28 |
-
st.title("Audio Classification with
|
| 29 |
|
| 30 |
# Audio file selection
|
| 31 |
selected_audio_name = st.selectbox("Select an audio file", list(audio_files.keys()))
|
| 32 |
-
audio_file_path = audio_files[selected_audio_name]
|
| 33 |
|
| 34 |
# Perform classification
|
| 35 |
if st.button("Classify"):
|
| 36 |
-
|
| 37 |
-
with open(audio_file_path, "rb") as audio_file:
|
| 38 |
-
audio_bytes = audio_file.read()
|
| 39 |
-
|
| 40 |
-
results = audio_classifier(audio_bytes)
|
| 41 |
|
| 42 |
# Displaying results
|
| 43 |
st.write("Classification Results:")
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import requests
|
| 3 |
import os
|
| 4 |
|
| 5 |
+
# Hugging Face API setup
|
| 6 |
+
API_URL = "https://api-inference.huggingface.co/models/MIT/ast-finetuned-audioset-10-10-0.4593"
|
| 7 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 8 |
+
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
|
| 9 |
|
| 10 |
+
# Function to send audio file to the Hugging Face model for classification
|
| 11 |
+
def query(filename):
|
| 12 |
+
with open(filename, "rb") as f:
|
| 13 |
+
data = f.read()
|
| 14 |
+
response = requests.post(API_URL, headers=headers, files={"file": f})
|
| 15 |
+
return response.json()
|
| 16 |
|
| 17 |
+
# Pre-uploaded audio files (assuming these files are stored in a directory named 'audio_files')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
audio_files = {
|
| 19 |
"Labrador Barking": "labrador-barking.mp3",
|
| 20 |
"Tolling Bell": "tolling-bell.mp3",
|
|
|
|
| 25 |
}
|
| 26 |
|
| 27 |
# Streamlit UI
|
| 28 |
+
st.title("Audio Classification with Hugging Face Inference API")
|
| 29 |
|
| 30 |
# Audio file selection
|
| 31 |
selected_audio_name = st.selectbox("Select an audio file", list(audio_files.keys()))
|
| 32 |
+
audio_file_path = os.path.join("path_to_your_audio_files", audio_files[selected_audio_name]) # Update path as necessary
|
| 33 |
|
| 34 |
# Perform classification
|
| 35 |
if st.button("Classify"):
|
| 36 |
+
results = query(audio_file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
# Displaying results
|
| 39 |
st.write("Classification Results:")
|
| 40 |
+
if isinstance(results, list): # Check if the response is as expected
|
| 41 |
+
for result in results:
|
| 42 |
+
label = result['label']
|
| 43 |
+
score = round(result['score'], 4) # Adjust rounding as needed
|
| 44 |
+
st.write(f"Label: {label}, Score: {score}")
|
| 45 |
+
else:
|
| 46 |
+
st.write("An error occurred:", results)
|