Spaces:
Runtime error
Runtime error
File size: 1,510 Bytes
9833711 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import streamlit as st
from transformers import pipeline
import os
# Define your Hugging Face token; secure this appropriately
HF_TOKEN = os.getenv('HF_TOKEN')
# Set up Hugging Face pipeline for audio classification using the specified model
model_name = "MIT/ast-finetuned-audioset-10-10-0.4593"
@st.cache(allow_output_mutation=True)
def load_model(token, model_name):
return pipeline("audio-classification", model=model_name, use_auth_token=token)
audio_classifier = load_model(HF_TOKEN, model_name)
# Pre-uploaded audio files
audio_files = {
"Labrador Barking": "labrador-barking.mp3",
"Tolling Bell": "tolling-bell.mp3",
"Airplane Landing": "airplane-landing.mp3",
"Old Car Engine": "old-car-engine.mp3",
"Hard Shoes": "hard_shoes.mp3",
"Alien Spaceship": "alien-spaceship.mp3",
}
# Streamlit UI
st.title("Audio Classification with Pre-uploaded Files")
# Audio file selection
selected_audio_name = st.selectbox("Select an audio file", list(audio_files.keys()))
audio_file_path = audio_files[selected_audio_name]
# Perform classification
if st.button("Classify"):
# Read audio file
with open(audio_file_path, "rb") as audio_file:
audio_bytes = audio_file.read()
results = audio_classifier(audio_bytes)
# Displaying results
st.write("Classification Results:")
for result in results:
label = result['label']
score = round(result['score'], 4) # Adjust rounding as needed
st.write(f"Label: {label}, Score: {score}")
|