Spaces:
Running
Running
commit 2
Browse files- extract_audio.py +18 -0
- helpers/srt_generator.py +40 -0
- moderator.py +29 -0
- requirements.txt +16 -0
- shorts_generator.py +105 -0
- subtitles.py +67 -0
- transcript_detect.py +47 -0
- translation.py +48 -0
extract_audio.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from moviepy.editor import VideoFileClip
|
2 |
+
|
3 |
+
|
4 |
+
class VideoHelper(object):
|
5 |
+
def extract_audio(self,video_path, audio_path):
|
6 |
+
# Load the video file
|
7 |
+
video = VideoFileClip(video_path)
|
8 |
+
|
9 |
+
# Extract the audio
|
10 |
+
audio = video.audio
|
11 |
+
|
12 |
+
# Write the audio to a file
|
13 |
+
audio.write_audiofile(audio_path)
|
14 |
+
|
15 |
+
# Close the video clip
|
16 |
+
video.close()
|
17 |
+
|
18 |
+
|
helpers/srt_generator.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import timedelta
|
2 |
+
import json
|
3 |
+
|
4 |
+
# Sample list of subtitle objects
|
5 |
+
subtitles = [
|
6 |
+
{
|
7 |
+
"text": " The entire world has been suffering due to the climate change dilemma.",
|
8 |
+
"start": 0.0,
|
9 |
+
"end": 9.88,
|
10 |
+
"id": 0
|
11 |
+
},
|
12 |
+
# Add more subtitle objects here
|
13 |
+
]
|
14 |
+
|
15 |
+
class SRTGenerator(object):
|
16 |
+
|
17 |
+
@classmethod
|
18 |
+
def format_time(cls,seconds):
|
19 |
+
"""Convert seconds to SRT time format (hh:mm:ss,ms)"""
|
20 |
+
ms = int((seconds - int(seconds)) * 1000)
|
21 |
+
td = str(timedelta(seconds=int(seconds)))
|
22 |
+
return f"{td},{ms:03d}"
|
23 |
+
@classmethod
|
24 |
+
def generate_srt(cls,subtitles, output_file):
|
25 |
+
with open(output_file, 'w') as f:
|
26 |
+
for sub in subtitles:
|
27 |
+
start_time = cls.format_time(sub['start'])
|
28 |
+
end_time = cls.format_time(sub['end'])
|
29 |
+
text = sub['text'].strip()
|
30 |
+
srt_entry = f"{sub['id'] + 1}\n{start_time} --> {end_time}\n{text}\n\n"
|
31 |
+
f.write(srt_entry)
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
if __name__ == "__main__":
|
36 |
+
segments_file = "segments.json"
|
37 |
+
with open(segments_file, 'r') as f:
|
38 |
+
segments = json.load(f)
|
39 |
+
output_srt_file = "subtitles.srt"
|
40 |
+
SRTGenerator.generate_srt(segments, output_srt_file)
|
moderator.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pprint import pprint
|
2 |
+
from detoxify import Detoxify
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
class DetoxifyModerator(object):
|
6 |
+
|
7 |
+
def detect_toxicity(self,text):
|
8 |
+
results = Detoxify('original').predict(text)
|
9 |
+
return results
|
10 |
+
|
11 |
+
# def get_toxicity_report(self, toxicity_result):
|
12 |
+
# for key in toxicity_result:
|
13 |
+
# toxicity_result[key] = round(toxicity_result[key] * 100,2)
|
14 |
+
|
15 |
+
# return toxicity_result
|
16 |
+
|
17 |
+
def format_results(self,results):
|
18 |
+
# Convert the dictionary to a pandas DataFrame
|
19 |
+
df = pd.DataFrame(list(results.items()), columns=["Category", "Percentage"])
|
20 |
+
df["Percentage"] = df["Percentage"].apply(lambda x: f"{x:.2%}") # Format as percentage
|
21 |
+
return df
|
22 |
+
|
23 |
+
if __name__ == '__main__':
|
24 |
+
detoxify_moderator = DetoxifyModerator()
|
25 |
+
result = detoxify_moderator.detect_toxicity('To let the user select the target language for translation, you can add a dropdown menu in the Gradio interface. This will allow users to choose the target language before processing the video. Here\'s how you can modify the script to include this feature')
|
26 |
+
report = detoxify_moderator.get_toxicity_report(result)
|
27 |
+
pprint(report)
|
28 |
+
|
29 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai
|
2 |
+
torch
|
3 |
+
torchvision
|
4 |
+
torchaudio
|
5 |
+
openai-whisper
|
6 |
+
transformers
|
7 |
+
sentencepiece
|
8 |
+
sacremoses
|
9 |
+
pydub
|
10 |
+
moviepy
|
11 |
+
gradio
|
12 |
+
detoxify
|
13 |
+
ffmpeg-python
|
14 |
+
opencv-python
|
15 |
+
pysrt
|
16 |
+
python-dotenv
|
shorts_generator.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import pysrt
|
3 |
+
from openai import OpenAI
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
import subprocess
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
class ShortsGenerator(object):
|
13 |
+
|
14 |
+
def read_srt(self,file_path):
|
15 |
+
subtitles = pysrt.open(file_path)
|
16 |
+
return subtitles
|
17 |
+
|
18 |
+
def extract_text(self,subtitles):
|
19 |
+
text = ''
|
20 |
+
for subtitle in subtitles:
|
21 |
+
text += subtitle.text + ' '
|
22 |
+
return text.strip()
|
23 |
+
|
24 |
+
def get_important_scenes(self,text):
|
25 |
+
# Load OpenAI API key
|
26 |
+
client = OpenAI(api_key=os.getenv('OPEN_AI_API_KEY'))
|
27 |
+
response = client.chat.completions.create(
|
28 |
+
model="gpt-3.5-turbo",
|
29 |
+
messages=[
|
30 |
+
{"role": "system", "content": "You are a helpful videos editing assistant."},
|
31 |
+
{"role": "user", "content": "Identify the important scenes from the following subtitles text return that by start times and end time,videos should be at less 30s and maximum 2 min with format like this \"1. Arrival of Raymond Reddington at the FBI office - Start time: 00:00:39, End time: 00:01:17\":\n" + text}
|
32 |
+
],
|
33 |
+
max_tokens=1500
|
34 |
+
)
|
35 |
+
# print(f" this out put : {response.choices[0].message.content}")
|
36 |
+
important_scenes = response.choices[0].message
|
37 |
+
return important_scenes
|
38 |
+
|
39 |
+
def execute(self,srt_file_path):
|
40 |
+
subtitles = self.read_srt(srt_file_path)
|
41 |
+
text = self.extract_text(subtitles)
|
42 |
+
important_scenes = self.get_important_scenes(text)
|
43 |
+
return important_scenes
|
44 |
+
|
45 |
+
|
46 |
+
def extract_scenes(self,input_text):
|
47 |
+
scenes = []
|
48 |
+
|
49 |
+
pattern = r'(?P<scene>\d+)\. (?P<description>.*?) - Start time: (?P<start>\d{2}:\d{2}:\d{2}), End time: (?P<end>\d{2}:\d{2}:\d{2})'
|
50 |
+
|
51 |
+
matches = re.finditer(pattern, input_text)
|
52 |
+
for match in matches:
|
53 |
+
scene_data = match.groupdict()
|
54 |
+
scenes.append(scene_data)
|
55 |
+
|
56 |
+
return scenes
|
57 |
+
|
58 |
+
|
59 |
+
def extract_video_scenes(self,video_file, scenes):
|
60 |
+
|
61 |
+
shorts_files_path_list = []
|
62 |
+
|
63 |
+
# Output directory
|
64 |
+
output_dir = "output/"
|
65 |
+
|
66 |
+
# Ensure output directory exists
|
67 |
+
os.makedirs(output_dir, exist_ok=True)
|
68 |
+
|
69 |
+
# Process each scene
|
70 |
+
for scene in scenes:
|
71 |
+
start_time = scene['start']
|
72 |
+
end_time = scene['end']
|
73 |
+
description = scene['description']
|
74 |
+
output_filename = os.path.join(output_dir, f"{description}.mp4")
|
75 |
+
shorts_files_path_list.append(output_filename)
|
76 |
+
|
77 |
+
# ffmpeg command to extract scene
|
78 |
+
cmd = [
|
79 |
+
'ffmpeg',
|
80 |
+
'-i', video_file,
|
81 |
+
'-ss', start_time,
|
82 |
+
'-to', end_time,
|
83 |
+
'-c:v', 'libx264',
|
84 |
+
'-c:a', 'aac',
|
85 |
+
'-strict', 'experimental',
|
86 |
+
'-b:a', '192k',
|
87 |
+
output_filename,
|
88 |
+
'-y' # Overwrite output file if exists
|
89 |
+
]
|
90 |
+
|
91 |
+
subprocess.run(cmd, capture_output=True)
|
92 |
+
|
93 |
+
return shorts_files_path_list
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
if __name__ == "__main__":
|
99 |
+
srt_file_path = 's1.srt'
|
100 |
+
path_video = '1.mp4'
|
101 |
+
shorts_generator = ShortsGenerator()
|
102 |
+
important_scenes = shorts_generator.execute(srt_file_path)
|
103 |
+
print("Important Scenes:\n", shorts_generator.extract_scenes(important_scenes.content))
|
104 |
+
shorts_generator.extract_video_scenes( path_video, shorts_generator.extract_scenes(important_scenes.content))
|
105 |
+
print("Well Done")
|
subtitles.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from moviepy.editor import VideoFileClip, TextClip, CompositeVideoClip
|
2 |
+
import json
|
3 |
+
|
4 |
+
|
5 |
+
class SubtitlesRenderer(object):
|
6 |
+
|
7 |
+
def add_subtitles(self,video_file, subtitle_file, output_file):
|
8 |
+
# Load subtitle data from JSON
|
9 |
+
with open(subtitle_file, 'r', encoding='utf-8') as f:
|
10 |
+
subtitles = json.load(f)
|
11 |
+
|
12 |
+
# Load the video
|
13 |
+
video = VideoFileClip(video_file)
|
14 |
+
|
15 |
+
# Initialize an array to store TextClips
|
16 |
+
text_clips_list = []
|
17 |
+
|
18 |
+
# Define the maximum width for the subtitles
|
19 |
+
max_width = video.size[0] - 40 # Adjust as needed, leaving some padding on the sides
|
20 |
+
|
21 |
+
|
22 |
+
# Create TextClips for each subtitle
|
23 |
+
for subtitle in subtitles:
|
24 |
+
text = subtitle['text']
|
25 |
+
start_time = subtitle['start']
|
26 |
+
end_time = subtitle['end']
|
27 |
+
|
28 |
+
# Create TextClip with subtitle text
|
29 |
+
txt_clip = TextClip(text, fontsize=28, color='white', font='Arial', method='caption',size=(max_width, None),stroke_color='black',
|
30 |
+
stroke_width= 0.5, bg_color='black',)
|
31 |
+
|
32 |
+
# Set the duration of the subtitle
|
33 |
+
txt_clip = txt_clip.set_duration(end_time - start_time)
|
34 |
+
|
35 |
+
# Position the subtitle at the bottom
|
36 |
+
txt_clip = txt_clip.set_position(('center', 'bottom'))
|
37 |
+
|
38 |
+
# Add TextClip to the array
|
39 |
+
text_clips_list.append(txt_clip.set_start(start_time))
|
40 |
+
|
41 |
+
# Composite all TextClips onto the video
|
42 |
+
#final_clip = video.fl(compose_text, text_clips_list)
|
43 |
+
# Composite all TextClips onto the video
|
44 |
+
final_clip = CompositeVideoClip([video] + text_clips_list)
|
45 |
+
|
46 |
+
# Write the result to a file
|
47 |
+
final_clip.write_videofile(output_file, codec='libx264', fps=video.fps, audio_codec='aac',
|
48 |
+
ffmpeg_params=["-vf", "format=yuv420p"]) # Add this for compatibility
|
49 |
+
|
50 |
+
return output_file
|
51 |
+
# def compose_text(self,frame, t, text_clips):
|
52 |
+
# # Select the appropriate TextClips for the current time t
|
53 |
+
# current_clips = [text_clip for text_clip in text_clips if text_clip.start < t < text_clip.end]
|
54 |
+
|
55 |
+
# # Composite the selected TextClips onto the frame
|
56 |
+
# for clip in current_clips:
|
57 |
+
# frame = frame.blit(clip.get_frame(t - clip.start), clip.pos)
|
58 |
+
# return frame
|
59 |
+
|
60 |
+
if __name__ == '__main__':
|
61 |
+
video_file = 'video.mp4'
|
62 |
+
subtitle_file = 'segments.json'
|
63 |
+
output_file = 'output_video_with_subtitles.mp4'
|
64 |
+
|
65 |
+
renderer = SubtitlesRenderer()
|
66 |
+
renderer.add_subtitles(video_file, subtitle_file, output_file)
|
67 |
+
|
transcript_detect.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import whisper
|
2 |
+
|
3 |
+
class WhisperModel(object):
|
4 |
+
|
5 |
+
def __init__(self,model_type):
|
6 |
+
self.model = whisper.load_model("base")
|
7 |
+
# Transcribe an audio file
|
8 |
+
def transcribe_audio(self,file_path):
|
9 |
+
try:
|
10 |
+
result = self.model.transcribe(file_path)
|
11 |
+
return result
|
12 |
+
except Exception as e:
|
13 |
+
print(f"Error {e}")
|
14 |
+
raise Exception(f'Error trnascribe audio file {e}')
|
15 |
+
|
16 |
+
def get_text(self,transcription):
|
17 |
+
return transcription['text']
|
18 |
+
|
19 |
+
def get_detected_language(self,transcription):
|
20 |
+
return transcription['language']
|
21 |
+
|
22 |
+
def get_segments(self,transcription):
|
23 |
+
text_segments = []
|
24 |
+
for segment in transcription['segments']:
|
25 |
+
text_segments.append({
|
26 |
+
"text": segment['text'],
|
27 |
+
"start": segment['start'],
|
28 |
+
"end": segment['end'],
|
29 |
+
"id": segment['id'],
|
30 |
+
})
|
31 |
+
return text_segments
|
32 |
+
|
33 |
+
def detect_language(self,file_path):
|
34 |
+
try:
|
35 |
+
audio = whisper.load_audio(file_path)
|
36 |
+
audio = whisper.pad_or_trim(audio)
|
37 |
+
# make log-Mel spectrogram and move to the same device as the model
|
38 |
+
mel = whisper.log_mel_spectrogram(audio).to(self.model.device)
|
39 |
+
# detect the spoken language
|
40 |
+
_, probs = self.model.detect_language(mel)
|
41 |
+
print(f"Detected language: {max(probs, key=probs.get)}")
|
42 |
+
return max(probs, key=probs.get)
|
43 |
+
except Exception as e:
|
44 |
+
print(f"Error {e}")
|
45 |
+
raise Exception(f'Error detecting language {e}')
|
46 |
+
|
47 |
+
|
translation.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import MarianMTModel, MarianTokenizer
|
2 |
+
|
3 |
+
class TranslationModel(object):
|
4 |
+
def __init__(self):
|
5 |
+
pass
|
6 |
+
|
7 |
+
def translate_chunk(self,chunk, src_lang, tgt_lang):
|
8 |
+
try:
|
9 |
+
|
10 |
+
model_name = f'Helsinki-NLP/opus-mt-{src_lang}-{tgt_lang}'
|
11 |
+
model = MarianMTModel.from_pretrained(model_name)
|
12 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
13 |
+
|
14 |
+
inputs = tokenizer(chunk, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
15 |
+
translated_tokens = model.generate(**inputs)
|
16 |
+
translated_text = tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
|
17 |
+
|
18 |
+
return translated_text
|
19 |
+
|
20 |
+
except Exception as e:
|
21 |
+
print(e)
|
22 |
+
raise Exception(f"Error translating text {e}")
|
23 |
+
|
24 |
+
def translate_text(self,text, src_lang, tgt_lang):
|
25 |
+
max_length = 512
|
26 |
+
chunks = self.split_text(text, max_length)
|
27 |
+
translated_chunks = [self.translate_chunk(chunk, src_lang, tgt_lang) for chunk in chunks]
|
28 |
+
return ' '.join(translated_chunks)
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
def split_text(self,text, max_length):
|
33 |
+
# Split text into sentences
|
34 |
+
sentences = text.split('. ')
|
35 |
+
chunks = []
|
36 |
+
current_chunk = ""
|
37 |
+
|
38 |
+
for sentence in sentences:
|
39 |
+
if len(current_chunk) + len(sentence) + 1 > max_length:
|
40 |
+
chunks.append(current_chunk.strip())
|
41 |
+
current_chunk = sentence + ". "
|
42 |
+
else:
|
43 |
+
current_chunk += sentence + ". "
|
44 |
+
|
45 |
+
if current_chunk:
|
46 |
+
chunks.append(current_chunk.strip())
|
47 |
+
|
48 |
+
return chunks
|