Rosetta-AI / app.py
adeeb-khoja's picture
init commit
6d31a7a verified
import json
from altair import value
from matplotlib.streamplot import OutOfBounds
from sympy import substitution, viete
from extract_audio import VideoHelper
from helpers.srt_generator import SRTGenerator
from moderator import DetoxifyModerator
from shorts_generator import ShortsGenerator
from subtitles import SubtitlesRenderer
from transcript_detect import *
from translation import *
import gradio as gr
from dotenv import load_dotenv
def translate_segments(segments,translator: TranslationModel,from_lang,to_lang):
transalted_segments = []
for segment in segments:
translated_segment_text = translator.translate_text(segment['text'],from_lang,to_lang)
transalted_segments.append({'text':translated_segment_text,'start':segment['start'],'end':segment['end'],'id':segment['id']})
return transalted_segments
def main(file,translate_to_lang):
#Extracting the audio from video
video_file_path = file
audio_file_path = 'extracted_audio.mp3'
video_helper = VideoHelper()
print('Extracting audio from video...')
video_helper.extract_audio(video_file_path, audio_file_path)
whisper_model = WhisperModel('base')
print('Transcriping audio file....')
transcription = whisper_model.transcribe_audio(audio_file_path)
print('Generating transctipt text...')
transcript_text = whisper_model.get_text(transcription)
print('Detecting audio language....')
detected_language = whisper_model.get_detected_language(transcription)
print('Generating transcript segments...')
transcript_segments = whisper_model.get_segments(transcription)
# Write the transcription to a text file
print('Writing transcript into text file...')
transcript_file_path = "transcript.txt"
with open(transcript_file_path, "w",encoding="utf-8") as file:
file.write(transcript_text)
# Translate transcript
translation_model = TranslationModel()
target_language = supported_languages[translate_to_lang]
print(f'Translating transcript text from {detected_language} to {target_language}...')
transalted_text = translation_model.translate_text(transcript_text,detected_language,target_language)
# print(f'Translating transcript segments from {detected_language} to {target_language}...')
# transalted_segments = translate_segments(transcript_segments,translation_model,detected_language,target_language)
# Write the translation to a text file
print('Writing translation text file...')
translation_file_path = "translation.txt"
with open(translation_file_path, "w",encoding="utf-8") as file:
file.write(transalted_text)
print('Writing transcsript segments and translated segments to json file...')
segments_file_path = "segments.json"
with open(segments_file_path, "w",encoding="utf-8") as file:
json.dump(transcript_segments, file,ensure_ascii=False)
# print('Writing transcsript segments and translated segments to json file...')
# translated_segments_file_path = "translated_segments.json"
# with open(translated_segments_file_path, "w",encoding="utf-8") as file:
# json.dump(transalted_segments, file,ensure_ascii=False)
#Run Moderator to detect toxicity
print('Analyzing and detecing toxicity levels...')
detoxify_moderator = DetoxifyModerator()
result = detoxify_moderator.detect_toxicity(transcript_text)
df = detoxify_moderator.format_results(result)
#Render subtitles on video
renderer = SubtitlesRenderer()
subtitles_file_path = 'segments.json'
output_file_path = 'subtitled_video.mp4'
subtitled_video = renderer.add_subtitles(video_file_path,subtitles_file_path,output_file_path)
# Generate short videos from video
output_srt_file = 'subtitles.srt'
print('Generating SRT file...')
#Generate srt file
SRTGenerator.generate_srt(transcript_segments,output_srt_file)
shorts_generator = ShortsGenerator()
print('Generating shorts from important scenes...')
selected_scenes = shorts_generator.execute(output_srt_file)
shorts_path_list = shorts_generator.extract_video_scenes( video_file_path, shorts_generator.extract_scenes(selected_scenes.content))
return_shorts_list = shorts_path_list + [""] * (3 - len(shorts_path_list))
return transcript_text, transalted_text, df, subtitled_video, return_shorts_list[0], return_shorts_list[1], return_shorts_list[2]
def interface_function(file,translate_to_lang,with_transcript=False,with_translations=False,with_subtitles=False,with_shorts=False):
return main(file,translate_to_lang)
supported_languages = {
"Spanish": "es",
"French": "fr",
"German": "de",
"Russian": "ru",
"Arabic": "ar",
"Hindi": "hi"
}
# Load environment variables from .env file
load_dotenv()
inputs = [gr.Video(label='Content Video'),gr.Dropdown(list(supported_languages.keys()), label="Target Language"),gr.Checkbox(label="Generate Transcript"),
gr.Checkbox(label="Translate Transcript"),gr.Checkbox(label="Generate Subtitles"),gr.Checkbox(label="Generate Shorts")]
outputs = [gr.Textbox(label="Transcript"), gr.Textbox(label="Translation"),gr.DataFrame(label="Moderation Results"),gr.Video(label='Output Video with Subtitles')]
short_outputs = [gr.Video(label=f"Short {i+1}") for i in range(3)]
outputs.extend(short_outputs)
demo = gr.Interface(
fn=interface_function,
inputs=inputs,
outputs=outputs,
title="Rosetta AI",
description="Content Creation Customization"
)
# with gr.Blocks() as demo:
# file_output = gr.File()
# upload_button = gr.UploadButton("Click to Upload a Video", file_types=["video"], file_count="single")
# upload_button.upload(main, upload_button, ['text','text'])
demo.launch()