Spaces:
Running
Running
import json | |
from altair import value | |
from matplotlib.streamplot import OutOfBounds | |
from sympy import substitution, viete | |
from extract_audio import VideoHelper | |
from helpers.srt_generator import SRTGenerator | |
from moderator import DetoxifyModerator | |
from shorts_generator import ShortsGenerator | |
from subtitles import SubtitlesRenderer | |
from transcript_detect import * | |
from translation import * | |
import gradio as gr | |
from dotenv import load_dotenv | |
def translate_segments(segments,translator: TranslationModel,from_lang,to_lang): | |
transalted_segments = [] | |
for segment in segments: | |
translated_segment_text = translator.translate_text(segment['text'],from_lang,to_lang) | |
transalted_segments.append({'text':translated_segment_text,'start':segment['start'],'end':segment['end'],'id':segment['id']}) | |
return transalted_segments | |
def main(file,translate_to_lang): | |
#Extracting the audio from video | |
video_file_path = file | |
audio_file_path = 'extracted_audio.mp3' | |
video_helper = VideoHelper() | |
print('Extracting audio from video...') | |
video_helper.extract_audio(video_file_path, audio_file_path) | |
whisper_model = WhisperModel('base') | |
print('Transcriping audio file....') | |
transcription = whisper_model.transcribe_audio(audio_file_path) | |
print('Generating transctipt text...') | |
transcript_text = whisper_model.get_text(transcription) | |
print('Detecting audio language....') | |
detected_language = whisper_model.get_detected_language(transcription) | |
print('Generating transcript segments...') | |
transcript_segments = whisper_model.get_segments(transcription) | |
# Write the transcription to a text file | |
print('Writing transcript into text file...') | |
transcript_file_path = "transcript.txt" | |
with open(transcript_file_path, "w",encoding="utf-8") as file: | |
file.write(transcript_text) | |
# Translate transcript | |
translation_model = TranslationModel() | |
target_language = supported_languages[translate_to_lang] | |
print(f'Translating transcript text from {detected_language} to {target_language}...') | |
transalted_text = translation_model.translate_text(transcript_text,detected_language,target_language) | |
# print(f'Translating transcript segments from {detected_language} to {target_language}...') | |
# transalted_segments = translate_segments(transcript_segments,translation_model,detected_language,target_language) | |
# Write the translation to a text file | |
print('Writing translation text file...') | |
translation_file_path = "translation.txt" | |
with open(translation_file_path, "w",encoding="utf-8") as file: | |
file.write(transalted_text) | |
print('Writing transcsript segments and translated segments to json file...') | |
segments_file_path = "segments.json" | |
with open(segments_file_path, "w",encoding="utf-8") as file: | |
json.dump(transcript_segments, file,ensure_ascii=False) | |
# print('Writing transcsript segments and translated segments to json file...') | |
# translated_segments_file_path = "translated_segments.json" | |
# with open(translated_segments_file_path, "w",encoding="utf-8") as file: | |
# json.dump(transalted_segments, file,ensure_ascii=False) | |
#Run Moderator to detect toxicity | |
print('Analyzing and detecing toxicity levels...') | |
detoxify_moderator = DetoxifyModerator() | |
result = detoxify_moderator.detect_toxicity(transcript_text) | |
df = detoxify_moderator.format_results(result) | |
#Render subtitles on video | |
renderer = SubtitlesRenderer() | |
subtitles_file_path = 'segments.json' | |
output_file_path = 'subtitled_video.mp4' | |
subtitled_video = renderer.add_subtitles(video_file_path,subtitles_file_path,output_file_path) | |
# Generate short videos from video | |
output_srt_file = 'subtitles.srt' | |
print('Generating SRT file...') | |
#Generate srt file | |
SRTGenerator.generate_srt(transcript_segments,output_srt_file) | |
shorts_generator = ShortsGenerator() | |
print('Generating shorts from important scenes...') | |
selected_scenes = shorts_generator.execute(output_srt_file) | |
shorts_path_list = shorts_generator.extract_video_scenes( video_file_path, shorts_generator.extract_scenes(selected_scenes.content)) | |
return_shorts_list = shorts_path_list + [""] * (3 - len(shorts_path_list)) | |
return transcript_text, transalted_text, df, subtitled_video, return_shorts_list[0], return_shorts_list[1], return_shorts_list[2] | |
def interface_function(file,translate_to_lang,with_transcript=False,with_translations=False,with_subtitles=False,with_shorts=False): | |
return main(file,translate_to_lang) | |
supported_languages = { | |
"Spanish": "es", | |
"French": "fr", | |
"German": "de", | |
"Russian": "ru", | |
"Arabic": "ar", | |
"Hindi": "hi" | |
} | |
# Load environment variables from .env file | |
load_dotenv() | |
inputs = [gr.Video(label='Content Video'),gr.Dropdown(list(supported_languages.keys()), label="Target Language"),gr.Checkbox(label="Generate Transcript"), | |
gr.Checkbox(label="Translate Transcript"),gr.Checkbox(label="Generate Subtitles"),gr.Checkbox(label="Generate Shorts")] | |
outputs = [gr.Textbox(label="Transcript"), gr.Textbox(label="Translation"),gr.DataFrame(label="Moderation Results"),gr.Video(label='Output Video with Subtitles')] | |
short_outputs = [gr.Video(label=f"Short {i+1}") for i in range(3)] | |
outputs.extend(short_outputs) | |
demo = gr.Interface( | |
fn=interface_function, | |
inputs=inputs, | |
outputs=outputs, | |
title="Rosetta AI", | |
description="Content Creation Customization" | |
) | |
# with gr.Blocks() as demo: | |
# file_output = gr.File() | |
# upload_button = gr.UploadButton("Click to Upload a Video", file_types=["video"], file_count="single") | |
# upload_button.upload(main, upload_button, ['text','text']) | |
demo.launch() | |