codelion commited on
Commit
e402da9
Β·
verified Β·
1 Parent(s): 9de9450

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +156 -1
README.md CHANGED
@@ -7,4 +7,159 @@ sdk: static
7
  pinned: false
8
  ---
9
 
10
- Edit this `README.md` markdown file to author your organization card.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  pinned: false
8
  ---
9
 
10
+ # Adaptive Classifier
11
+
12
+ A flexible, adaptive classification system that allows for dynamic addition of new classes and continuous learning from examples. Built on top of transformers from HuggingFace, this library provides an easy-to-use interface for creating and updating text classifiers.
13
+
14
+ ## Features
15
+
16
+ - πŸš€ Works with any transformer classifier model
17
+ - πŸ“ˆ Continuous learning capabilities
18
+ - 🎯 Dynamic class addition
19
+ - πŸ’Ύ Safe and efficient state persistence
20
+ - πŸ”„ Prototype-based learning
21
+ - 🧠 Neural adaptation layer
22
+
23
+ ## Try Now
24
+
25
+ | Use Case | Demonstrates | Link |
26
+ |----------|----------|-------|
27
+ | Basic Example (Cat or Dog) | Continuous learning | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1Zmvtb3XUFtUImEmYdKpkuqmxKVlRxzt9?usp=sharing) |
28
+ | Support Ticket Classification| Realistic examples | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1yeVCi_Cdx2jtM7HI0gbU6VlZDJsg_m8u?usp=sharing) |
29
+ | Query Classification | Different configurations | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1b2q303CLDRQAkC65Rtwcoj09ovR0mGwz?usp=sharing) |
30
+ | Multilingual Sentiment Analysis | Ensemble of classifiers | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/14tfRi_DtL-QgjBMgVRrsLwcov-zqbKBl?usp=sharing) |
31
+ | Product Category Classification | Batch processing | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1VyxVubB8LXXES6qElEYJL241emkV_Wxc?usp=sharing) |
32
+
33
+ ## Installation
34
+
35
+ ```bash
36
+ pip install adaptive-classifier
37
+ ```
38
+
39
+ ## Quick Start
40
+
41
+ ```python
42
+ from adaptive_classifier import AdaptiveClassifier
43
+
44
+ # Initialize with any HuggingFace model
45
+ classifier = AdaptiveClassifier("bert-base-uncased")
46
+
47
+ # Add some examples
48
+ texts = [
49
+ "The product works great!",
50
+ "Terrible experience",
51
+ "Neutral about this purchase"
52
+ ]
53
+ labels = ["positive", "negative", "neutral"]
54
+
55
+ classifier.add_examples(texts, labels)
56
+
57
+ # Make predictions
58
+ predictions = classifier.predict("This is amazing!")
59
+ print(predictions) # [('positive', 0.85), ('neutral', 0.12), ('negative', 0.03)]
60
+
61
+ # Save the classifier
62
+ classifier.save("./my_classifier")
63
+
64
+ # Load it later
65
+ loaded_classifier = AdaptiveClassifier.load("./my_classifier")
66
+ ```
67
+
68
+ ## Advanced Usage
69
+
70
+ ### Adding New Classes Dynamically
71
+
72
+ ```python
73
+ # Add a completely new class
74
+ new_texts = [
75
+ "Error code 404 appeared",
76
+ "System crashed after update"
77
+ ]
78
+ new_labels = ["technical"] * 2
79
+
80
+ classifier.add_examples(new_texts, new_labels)
81
+ ```
82
+
83
+ ### Continuous Learning
84
+
85
+ ```python
86
+ # Add more examples to existing classes
87
+ more_examples = [
88
+ "Best purchase ever!",
89
+ "Highly recommend this"
90
+ ]
91
+ more_labels = ["positive"] * 2
92
+
93
+ classifier.add_examples(more_examples, more_labels)
94
+ ```
95
+
96
+ ## How It Works
97
+
98
+ The system combines three key components:
99
+
100
+ 1. **Transformer Embeddings**: Uses state-of-the-art language models for text representation
101
+
102
+ 2. **Prototype Memory**: Maintains class prototypes for quick adaptation to new examples
103
+
104
+ 3. **Adaptive Neural Layer**: Learns refined decision boundaries through continuous training
105
+
106
+ ## Requirements
107
+
108
+ - Python β‰₯ 3.8
109
+ - PyTorch β‰₯ 2.0
110
+ - transformers β‰₯ 4.30.0
111
+ - safetensors β‰₯ 0.3.1
112
+ - faiss-cpu β‰₯ 1.7.4 (or faiss-gpu for GPU support)
113
+
114
+ ## Benefits of Adaptive Classification in LLM Routing
115
+
116
+ We evaluate the effectiveness of adaptive classification in optimizing LLM routing decisions. Using the arena-hard-auto-v0.1 dataset with 500 queries, we compared routing performance with and without adaptation while maintaining consistent overall success rates.
117
+
118
+ ### Key Results
119
+
120
+ | Metric | Without Adaptation | With Adaptation | Impact |
121
+ |--------|-------------------|-----------------|---------|
122
+ | High Model Routes | 113 (22.6%) | 98 (19.6%) | 0.87x |
123
+ | Low Model Routes | 387 (77.4%) | 402 (80.4%) | 1.04x |
124
+ | High Model Success Rate | 40.71% | 29.59% | 0.73x |
125
+ | Low Model Success Rate | 16.54% | 20.15% | 1.22x |
126
+ | Overall Success Rate | 22.00% | 22.00% | 1.00x |
127
+ | Cost Savings* | 25.60% | 32.40% | 1.27x |
128
+
129
+ *Cost savings calculation assumes high-cost model is 2x the cost of low-cost model
130
+
131
+ ### Analysis
132
+
133
+ The results highlight several key benefits of adaptive classification:
134
+
135
+ 1. **Improved Cost Efficiency**: While maintaining the same overall success rate (22%), the adaptive classifier achieved 32.40% cost savings compared to 25.60% without adaptation - a relative improvement of 1.27x in cost efficiency.
136
+
137
+ 2. **Better Resource Utilization**: The adaptive system routed more queries to the low-cost model (402 vs 387) while reducing high-cost model usage (98 vs 113), demonstrating better resource allocation.
138
+
139
+ 3. **Learning from Experience**: Through adaptation, the system improved the success rate of low-model routes from 16.54% to 20.15% (1.22x increase), showing effective learning from successful cases.
140
+
141
+ 4. **ROI on Adaptation**: The system adapted to 110 new examples during evaluation, leading to a 6.80% improvement in cost savings while maintaining quality - demonstrating significant return on the adaptation investment.
142
+
143
+ This real-world evaluation demonstrates that adaptive classification can significantly improve cost efficiency in LLM routing without compromising overall performance.
144
+
145
+ ## References
146
+
147
+ - [RouteLLM: Learning to Route LLMs with Preference Data](https://arxiv.org/abs/2406.18665)
148
+ - [Transformer^2: Self-adaptive LLMs](https://arxiv.org/abs/2501.06252)
149
+ - [Lamini Classifier Agent Toolkit](https://www.lamini.ai/blog/classifier-agent-toolkit)
150
+ - [Protoformer: Embedding Prototypes for Transformers](https://arxiv.org/abs/2206.12710)
151
+ - [Overcoming catastrophic forgetting in neural networks](https://arxiv.org/abs/1612.00796)
152
+
153
+ ## Citation
154
+
155
+ If you use this library in your research, please cite:
156
+
157
+ ```bibtex
158
+ @software{adaptive_classifier,
159
+ title = {Adaptive Classifier: Dynamic Text Classification with Continuous Learning},
160
+ author = {Asankhaya Sharma},
161
+ year = {2025},
162
+ publisher = {GitHub},
163
+ url = {https://github.com/codelion/adaptive-classifier}
164
+ }
165
+ ```